
GR 4051 Lecture Notes: Epiphany 2020

Nabil Iqbal

May 12, 2020

Contents

1 Geometric Preliminaries 3

1.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Vectors and their derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Curvature and the Riemann Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Gravity from Curvature 5

2.1 Newtonian physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Geodesics and the weak field limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Einstein’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 The Einstein-Hilbert Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Quick review of calculus of variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Varying the Einstein-Hilbert action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Cosmological constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.3 A moving particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.4 A little philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The Schwarzschild Solution 15

3.0.1 A cute but ultimately wrong calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Deriving the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Geodesic motion in the Schwarzschild metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Killing vectors and symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Solving the geodesic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



3.2.3 Circular orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Solar system tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Deflection of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Precession of the perihelion of Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Redshift of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 The Black Hole Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Eddington-Finkelstein coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Kruskal-Szerkes coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Other kinds of black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Cosmology 36

4.1 Kinematics: FRW metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Observers and redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Dynamics: the Friedmann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Cosmological solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Dilution of matter and radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Actual solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Our own universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 The energy budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 A few issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Gravitational waves 53

5.1 Gauge transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Gravitational waves and their polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Linearized Einstein equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Solving linearized wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Production of gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Detection of gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Advanced topics: Penrose Diagrams 61

A Christoffel symbols 63

A.1 Friedmann-Robertson-Walker metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2



B Propagating degrees of freedom 63

B.1 Propagating degrees of freedom: trivial example . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.2 Propagating degrees of freedom: general relativity . . . . . . . . . . . . . . . . . . . . . . . . 64

1 Geometric Preliminaries

This is a review of some simple geometric preliminaries that were established during the first half of the
course.

1.1 Conventions

Some important words on conventions: Greek indices µ, ν run over all 4 coordinates. Latin indices i, j
typically run only over spatial coordinates (x, y, z). Thus for example if I was talking about the four-velocity
of a particle I might write:

uµ = (ut, ui) = (ut, ux, uy, uz) (1.1)

The Minkowski metric is
ηµν = ηµν = diag(−1,+1,+1,+1) . (1.2)

We will always use this (-,+,+,+) signature in this course, which agrees with most (but not all) GR textbooks.
A useful reference is the very last page of Einstein Gravity in a Nutshell by A. Zee, where he summarizes a
lot of textbooks and their sign conventions.

1.2 Vectors and their derivatives

What is a vector?

It is not just four numbers – if we assemble the air pressure, temperature, etc. in to a 4-component object,
that will not be a vector. Instead, the basic idea here is that a vector is something that has a real geometric
meaning, and the meaning is independent of the coordinates that we use to describe it. For this to be true,
a vector must transform like a vector, i.e. if we have two coordinate systems xµ̄ and xµ describing the same
manifold, then the relation between the components of the vector in each coordinate system is

V µ̄ =
∂xµ̄

∂xµ
V µ (1.3)

Note that the relation for the down components of the vector is

Vµ̄ =
∂xµ

∂xµ̄
Vµ (1.4)

The Jacobian matrix appearing in the second equation is the inverse of that in the first equation. A tensor
is a vector with more indices (“A tensor is something that transforms like a tensor”).

Let us now consider taking the derivative of a vector. Note that the object:

∂µVσ (1.5)

is not a tensor. So this did not work. Instead we need to take a covariant derivative, defined as

∇µV σ = ∂µV
σ + ΓσµρV

ρ (1.6)
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The objects Γσµρ are called connection coefficients. They are not tensors, but their transformation properties
are such that the combination above is a tensor. If the connection is torsion-free (which is pretty much
always the case in physical applications) and metric-compatible (i.e. ∇µgαβ = 0) then they are further called
Christoffel symbols and are given by a formula

Γσµν =
1

2
gσλ (∂µgνλ + ∂νgλµ − ∂λgµν) . (1.7)

Now it further turns out that the covariant derivative of a lower-index vector (also called a covector, or a
covariant vector, or a one-form) is

∇µωσ = ∂µωσ − Γρµσωρ (1.8)

Using these two properties we can take covariant derivatives of tensors with arbitrary numbers of up or down
indices.

1.3 Curvature and the Riemann Tensor

Now we know that some spaces are curved and some spaces aren’t. One measure (the best measure) of this
curvature is whether you can parallel-transport a vector in a little curved loop and come back to the same
vector or not. It should make some intuitive sense that this parallel transport is given by the commutator of
two covariant derivatives. We may now directly compute:

[∇µ,∇ν ]V λ = RλρµνV
ρ (1.9)

where the Riemann tensor Rλρµν is defined as

Rλρµν = ∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ (1.10)

Beware signs; some books use different conventions. The Riemann tensor is a measure of how curvy a
manifold is.

Here are some important properties, which are most easily checked in Riemann normal coordinates (also
called locally inertial coordinates) in which Γ = 0 at a point:

1. Antisymmetric in first and last pairs of indices:

Rαβµν = −Rβαµν Rαβµν = −Rαβνµ (1.11)

2. Invariant under interchange of first pair of indices with second:

Rαβµν = Rµναβ (1.12)

3. Sum over cyclic permutations of last three indices vanishes:

Rαβµν +Rαµνβ +Rανβµ = 0. (1.13)

These are all equations that are all true locally at a point. There is also a differential identity that
relates the value of the Riemann tensor at neighbouring points, called the

4. Bianchi identity:
∇[γRαβ]µν = 0 (1.14)
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The Riemann tensor has a lot of indices and is a lot of information to deal with. A very tedious counting
problem lets you determine that it has 20 independent components in 4 dimensions.

To get more manageable objects, we can contract in various ways. For example, it is often very useful to
contract on the first and third indices to define the Ricci tensor:

Rµν = Rαµαν , (1.15)

whose trace defines the unimaginatively named Ricci scalar

R = gµνRµν . (1.16)

If we now contract indices twice on the Bianchi identity (1.14) we find the contracted Bianchi identity.

∇µRρµ =
1

2
∇ρR (1.17)

Given the contracted Bianchi identity, we see that there is a particular two index tensor that does two things:
(a) it depends on the curvature of the manifold, and (b) is is divergenceless. This tensor is fairly important
in what follows, and is called the Einstein tensor:

Gµν = Rµν −
1

2
Rgµν (1.18)

Given (1.17) it is immediately true that ∇µGµν = 0. This will be important.

2 Gravity from Curvature

Having already established all possible geometric preliminaries, we are ready to plunge into a study of the
physical implications of general relativity, i.e. to see how gravity actually emerges from this setup. Before
doing this in full general relativistic glory its good to remind ourselves how this works in conventional non-
relativistic Newtonian physics.

2.1 Newtonian physics

For a bit, let’s forget all this fancy stuff about curved space etc. and let’s recall how gravity works in
elementary physics. In conventional Newtonian mechanics, we have a field filling all of space called the
Newtonian gravitational potential Φ(x). (Presumably) immediately after the apple fell on his head, Newton
realized that all matter contributes to this Newtonian potential via an equation that we now write as Poisson’s
equation:

∇2Φ(x) = δij∂i∂jΦ(x) = 4πGρ(x) (2.1)

Given a point mass source ρ(x) = mδ(3)(x), this results in a gravitational potential that falls off as

Φ(x) = −GM
r

(2.2)

as you can verify in Problem 2 of this week’s homework. Now if you have a point particle of mass m, it feels
a gravitational force that is given by

F igrav = −m∂iΦ(x) (2.3)

And thus Newton’s second law F = ma tells us that the acceleration is related to this potential by:

m
d2xi

dt2
= −m∂iΦ (2.4)
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where the m’s now cancel. Note that from Newtonian physics this appears as a bit of a coincidence, but in
general relativity this is a manifestation of the equivalence principle and is required. Also note that I am
being cavalier about the indices here, because I am in flat space and it is okay. In the next section I will be
careful again.

We know experimentally that these equations work quite well for slowly moving objects and weak gravitational
fields; thus we must be able to reproduce them from Einstein gravity.

2.2 Geodesics and the weak field limit

We now will perform a similar analysis in general relativity. Recall the notation: µ runs over all 4 coordinates,
i, j will run over only space.

To understand how these things work, we should remind ourselves that the equivalence principle states that
physics on sufficiently small scales behaves as though we are in flat space. In other words, to figure out
what the right equations are, we should just ask ourselves what they would be in flat space, write them in a
tensorial way, and then assert that the resulting equations are correct in curved space.

Consider being in empty space, far from everything you can imagine. In that case, from elementary physics
we know that in flat space, particles move in straight lines. In Cartesian coordinates in flat space the right
equation is:

d2xµ

ds2
= 0 (2.5)

However this equation is not actually coordinate invariant. As you all know, its covariant version is the
geodesic equation. This is

D2xµ

ds2
= 0

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 (2.6)

This equation should somehow reduce to (2.4) in the non-relativistic weak field limit. To see how this can
happen, let’s first put down Cartesian coordinates (t, x, y, z). Now weak-field means

gµν = ηµν + hµν |hµν | � 1 (2.7)

From now on will work only to first order in hµν . Non-relativistic means that we move mostly in time, not
in space, so

dxi

ds
� 1 (2.8)

We will also work to the lowest non-trivial order in dxi

ds . As described in the first part of the course, we
normally pick the parameter along the path s to be the proper time (or length), because this simplifies the
equations. (This is called affine parametrization). In that case we have that the four-velocity is normalized
to 1. We thus find

gµν
dxµ

ds

dxν

ds
= −1 →

(
dt

ds

)2

−
(
dxi

ds

dxj

ds

)
δij = 1 (2.9)

where we assumed that gµν ≈ ηµν . But as we will work to lowest non-trivial order in dxi

ds , we may omit the
second term and conclude:

dt

ds
≈ 1 (2.10)

That means the only fun equation above is

d2xi

ds2
+ Γitt

dt

ds

dt

ds
= 0 (2.11)
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Now we need to compute the Christoffel symbol in the weak-field limit. Let’s also take the metric to be
time-independent, ∂thij = 0. We only need one Christoffel:

Γitt =
1

2
giµ (∂tgµt + ∂tgµt − ∂µgtt) ≈ −

1

2
ηij∂jhtt (2.12)

Using the fact that dt
ds ≈ 1, the first equation becomes

d2xi

ds2
=

1

2
∂ihtt (2.13)

Note there is no difference between s and t; thus, this looks like Newton’s equation! All we need is to define

htt = −2Φ(x) (2.14)

with Φ the Newtonian potential. Note what this means: particles moving in a weakly curved space with
metric

gtt ≈ −(1 + 2Φ(x)) (2.15)

look like they’re moving in a Newtonian gravitational potential Φ.

2.3 Einstein’s equation

We now need to search for the analog of the first equation (2.1): in other words, we have just learned how
matter (ok, particles) behave in curved space; but we now need to learn how curved space responds to matter.
This is given by Einstein’s equation. You all know it already, but I want to motivate a bit because this helps
understand why it has the structure it does. We expect it to be something of the form

(Curviness of space) = (Something involving matter) (2.16)

Now the equation must describe the dynamics of 10 degrees of freedom – so we will need a matrix equation,
or a two-index equation. What involves matter and has two indices? Clearly the right-hand side must be the
stress tensor.

(Curviness of space) = Tµν (2.17)

What can be on the left-hand side? We need something that has two indices. One candidate is Rµν . Why
doesn’t that work? The right-hand side is conserved, and so the left-hand side must also be. It turns out
that the only simple candidate is the Einstein tensor defined earlier. So now we basically have

Rµν −
1

2
Rgµν = 8πGTµν (2.18)

where I have put 8πG in the right place with the benefit of hindsight. Aren’t they beautiful and simple?
Depending on your taste, these have been called “the most beautiful equations of all time,” etc. etc. They
are kind of interesting; even though they are very simple to write down, they are actually fiendishly fiendishly
complicated, as the relation between Gµν and gµν is quite intricate. Very few exact solutions are known –
we will discuss many of those that are in the remainder of this class.

Before doing this, we need to understand why the constant on the right hand side is 8πG. We will do this
by appealing to the same trick we did previously; we will work out a particular component of this equation
and relate it to (2.1). It turns out this is simplest to do if we first take the trace to find that

−R = 8πGgµνTµν ≡ 8πGT (2.19)
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and then insert this back into the equation above to find

Rµν = 8πG

(
Tµν −

T

2
gµν

)
(2.20)

We will now evaluate just the tt component of this equation. We’ll do it on a metric (2.7) that is very close
to flat space.

First the right-hand side. Consider, as discussed in the previous half of the course, a perfect fluid stress
tensor:

Tµν = (ρ+ p)UµUν + pgµν (2.21)

Here Uµ is the four-velocity of the fluid elements. Let’s take the fluid to be sitting around not doing much.
This means that its fluid elements move only in time and not in space. Just like before, we have

U t ≈ 1 (2.22)

Let’s also set p = 0, i.e. the matter is dust. For a non-relativistic fluid, this makes sense, because there are
secret relative factors of c in the expression above that kill it. So now we can work out

Ttt(x) = ρ(x) T (x) = −ρ(x) (2.23)

Next, we need to work out Rtt. Ok, so we need Rtt = Rjtjt. Let’s now compute

Ritjt = ∂jΓ
i
tt − ∂tΓijt +O(Γ2) (2.24)

We can ignore the last few terms because we are working only to first order in h and Γ ∼ O(h); and we can
ignore the second term because we assume everything is static. So we find:

Rtt = Rjtjt = ∂jΓ
j
tt = −1

2
δij∂i∂jhtt (2.25)

where in the second equality we used the fact from last lecture that Γjtt = − 1
2δ
ij∂ihtt. Putting all of these

pieces together we find that

− 1

2
δij∂i∂jhtt = 8πG

(
Ttt −

T

2
gtt

)
= 4πGρ(x) (2.26)

Now recall from before that we know that the relation between the Newtonian potential and the metric
perturbation is htt = −2Φ(x). That means that this equation is

∇2Φ = 4πGρ(x) (2.27)

This is precisely what we expected from ordinary physics, (i.e. (2.1)). Note if we had put some other factor
there it would not have worked out and we would not have recovered ordinary non-relativistic physics in the
limit.

Thus we correctly recover Newton in the limit. Of course we do a great deal more, as we will see in the rest
of the course.

2.4 The Einstein-Hilbert Action

Now we are going to learn how to derive these equations from the stationary points of an action. This is very
useful; actions are usually the most elegant way to formulate classical physics, and they make the transition
to quantum mechanics easier (though, sadly, we will not discuss what happens when you do that to gravity
in this course.)
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2.4.1 Quick review of calculus of variations

So, what is the action? Recall that the action for a point particle is something like

S[x] =

∫
dsL(x, ẋ) =

∫
ds

(
1

2
ẋ2 − V (x)

)
(2.28)

It is a functional of the particle trajectory x(s). and we demand that the action be stationary with respect
to small variations of the particle trajectory δx to find the equations of motion. Let’s just remind ourselves
very quickly how this works:

δS[x] =

∫
ds

(
∂L

∂x
δx+

∂L

∂ẋ
δẋ

)
(2.29)

Now we integrate by parts on the last term to find:

δS[x] =

∫
ds

(
∂L

∂x
δx(s)− d

ds

(
∂L

∂ẋ

)
δx(s)

)
(2.30)

So the condition for stationarity is the familiar Euler-Lagrange equations:

∂L

∂x
− d

ds

∂L

∂ẋ
= 0 (2.31)

Let me take a moment to define the functional derivative S[x] with respect to δx(s): it is defined as the thing
multiplying δx(s) in the expression above, i.e. in this case we have:

δS[x]

δx(s)
=

(
∂L

∂x
− d

ds

∂L

∂ẋ

) ∣∣∣∣
s

(2.32)

2.4.2 Varying the Einstein-Hilbert action

Now we will do the same for gravity, i.e. the dynamics of the metric gµν(x). The first thing to note is that
the metric is a field defined over all space and time; thus the action is an integral over all of this, i.e.

S[g] =

∫
dtd3x (something) =

∫
d4x (something) (2.33)

Now the action determines physics, and physics is coordinate-invariant. Thus we want the numerical value
of the action to also be coordinate-invariant, i.e. a scalar. Let’s think for a second about what this means.
First of all, is the integration measure d4x invariant? No. By well-known formulas of calculus, you know
that under a coordinate transformation the integration measure changes by a factor of the determinant of
the Jacobian:

d4x̄ = d4x det

(
∂xµ̄

∂xµ

)
(2.34)

(recall dxdy = rdrdθ etc. etc.) How do we deal with this? It is quite simple: it turns out that the determinant
of the metric transforms as

det (gµ̄ν̄) = det

(
∂xµ

∂xµ̄
gµν

∂xν

∂xν̄

)
= det

(
∂xµ

∂xµ̄

)2

det (gµν) (2.35)

Now the Jacobian matrix appearing in (2.35) is precisely the inverse of that appearing in (2.34); thus the
combination

d4x̄
√
−det (gµ̄ν̄) = d4x

√
−det (gµν) (2.36)
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is indeed invariant. (This minus sign is because g has 3 negative eigenvalues and 1 positive.) So this is then
the correct measure for integrating anything. We will abbreviate it as

d4x
√
−g g ≡ det (gµν) (2.37)

We can now refine the action integral to be

S[g] =

∫
d4x
√
−g (something scalar) (2.38)

Now the action should be a scalar thing that involves derivatives of the metric. It turns out that really the
only reasonable choice is the Ricci scalar. This was first realized by Hilbert, and the action is thus called the
Einstein-Hilbert action:

SEH [g] =
1

16πG

∫
d4x
√
−gR (2.39)

So we now need to vary the action with respect to gµν . In fact it is easier to vary it with respect to the
inverse metric δgµν . Note that the variation of the inverse metric and the metric are related by a minus sign:
for any matrix M , consider

δM−1 = −M−1δMM−1 (2.40)

which for the case of the metric means
δgµν = −gµρδgρσgνσ (2.41)

Now we turn to the variation. This basically has three parts.

δS =
1

16πG

∫
d4x

(
(δ
√
−g)R+

√
−g [(δgµν)Rµν + gµνδRµν ]

)
(2.42)

Let’s call the terms δS1,2,3. δS1,2 aren’t bad; δS3 looks more complicated, as we need to work out the
variation of the Riemann tensor. This is not quite so fiendish as it appears. We will work out the variation
only in terms of the Christoffel symbols, i.e. from its definition

Rλµαν = ∂αΓλνµ + ΓλασΓσνµ − (α↔ ν) (2.43)

we vary in terms of δΓαβα to find

δRλµαν = ∂αδΓ
λ
νµ + δΓλασΓσνµ + ΓλασδΓ

σ
νµ − (α↔ ν) (2.44)

Now this is interesting: note that even though the Christoffel symbol is not a tensor, its variation is the
difference between two connections and thus is a tensor. So it makes sense to take its covariant derivative;
and indeed the thing appearing there is in fact

δRλµαν = ∇αδΓλνµ −∇νδΓλαµ (2.45)

Now let us note something interesting. We see that the term that we want is now two contractions:

gµνδRµν = gµνδRλµλν = ∇λvλ (2.46)

where I have defined the vector
vλ = δΓλµνg

µν − gλαδΓσσα (2.47)

Thus the term δS3 is

δS3 =
1

16πG

∫
d4x
√
−g∇λvλ (2.48)

However this is a total derivative! In other words, you can integrate it by parts using the curved-space version
of Gauss’s law to say that ∫

M
d4x
√
−g∇λvλ =

∫
∂M

d3x
√
−hnαvα (2.49)
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where M is the manifold and ∂M is its boundary, where hµν is the metric on this boundary. So this is not
actually a local integral that will contribute to the equations of motion; its just a boundary term that we
ignore.

So now the only thing that we have left to compute is

δS1 ∝
∫
d4x(δ

√
−g)R (2.50)

To compute the variation of the determinant of a metric, we use the fact that for any n× n matrix A

detA = exp Tr logA (2.51)

Proof: let’s diagonalize the matrix A. Call its eigenvectors λi. Then the left hand side is

detA = λ1λ2λ3 · · ·λn (2.52)

The logarithm of a matrix A is defined as the matrix with the same eigenvectors as A, but with eigenvalues
each equal to the logarithm of the eigenvalues of A. Thus it is clear that the right hand side is

exp

(
n∑
i=1

log λi

)
= λ1λ2 · · ·λn (2.53)

i.e. its equal to the left hand side.

This means that
δ(detA) = exp Tr logAδ (Tr logA) = detATr

(
A−1δA

)
(2.54)

Applied to the metric this means that

δg = ggµνδgµν = −ggµνδgµν (2.55)

and we can conclude that

δ
√
−g = −1

2

√
−ggµνδgµν (2.56)

Assembling the pieces we find that the variation of the Einstein-Hilbert action is

δS1 + δS2 =
1

16πGN

∫
d4x
√
−g
(
Rµν −

1

2
Rgµν

)
δgµν (2.57)

This is the result we were looking for. Demanding that this variation vanish we find that

Rµν −
1

2
Rgµν = 0, (2.58)

i.e. the vacuum Einstein equations!

2.5 Matter

So how do we obtain the other part? This comes from the fact that typically there will be other terms in the
action, i.e. there will be a “matter” bit that also depends on gµν . The total action is

S =
1

16πG

∫
d4x
√
−gR+ Sm[g] (2.59)
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where Sm is the action for matter degrees of freedom. We will discuss some examples shortly. But for now,
let’s just formally vary it to see that we find:

δS =
1

16πG

∫
d4x
√
−gGµνδgµν +

∫
d4x

δSm
δgµν

δgµν (2.60)

This variation will be stationary on solutions to Einstein’s equations as we know and love them (2.18) if we
simply state that the stress-energy tensor Tµν is defined to be:

Gµν = 8πGTµν Tµν(x) = − 2√
−g

δSm[g]

δgµν(x)
(2.61)

This expression involves a “functional derivative”; as we discussed around (2.32), it really just means that
you take the variation and look at the part multiplying δgµν .

Let us now look at some examples:

2.5.1 Cosmological constant

The very simplest term that we can add to the action is a cosmological constant, i.e. add this term to the
action as

SΛ = − 1

8πG

∫
d4x
√
−gΛ (2.62)

Its variation comes entirely from the determinant of the metric:

δSΛ = − 1

8πG

∫
d4x(δ

√
−g)Λ = +

1

16πG

∫
d4x
√
−ggµνδgµνΛ (2.63)

So from here we see that it contributes a term to the stress energy tensor that is

T (Λ)
µν = − 1

8πG
Λgµν (2.64)

We will come back to this in the section on cosmology.

2.5.2 Electromagnetism

In real life we also have electromagnetism. Everyone here should be familiar with at least the effects of
electromagnetism – it results in such diverse phenomena as light, lightning, static electricity, television, etc.
In this choice of topics I am being a little bit facetious here; in fact almost all observable phenomena at
everyday scales rely crucially on EM.

Let us take a second to develop electromagnetism in a sophisticated formalism. The basic degree of freedom
here is the vector potential Aµ(x); this is a 4-(co)vector field that depends on space and time. We also usually
construct the field strength tensor. This is defined as

Fµν(x) = ∇µAν −∇νAµ (2.65)

I want to take a second to point out that actually this particular expression can also be written in terms of
partials. To be more precise, let’s expand out each covariant derivative using the Christoffel symbols:

Fµν(x) = ∂µAν − ΓσµνAσ − ∂νAµ + ΓσνµAσ (2.66)
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Now because the Christoffels are symmetric, we have Γσµν = Γσνµ; thus the two Christoffel symbols cancel,
and we can write

Fµν(x) = ∂µAν − ∂νAµ (2.67)

Thus the expression for F takes the same form whether we use partial or covariant derivatives. This is a very
special case; generally this doesn’t happen. (In this case it has to do with the existence of differential forms,
which I will not discuss any further in this course).

Now whenever we want to specify a theory, you should write down its action as a function of the basic degree
of freedom. In this case the action functional also needs the metric, and it turns out to be:

SEM [A, g] = − 1

16π

∫
d4x
√
−ggµρgνσFµνFρσ (2.68)

The theory described by this action is also called Maxwell electrodynamics.

What are the equations of motion of the theory? To derive these, we vary the action with respect to Aµ:

δASEM [A, g] = − 2

16π

∫
d4x
√
−ggµρgνσFµνδFρσ = − 2

16π

∫
d4x
√
−ggµρgνσFµν (∇ρδAσ −∇σδAρ) (2.69)

= +
4

16π

∫
d4x
√
−ggµρgνσ(∇ρFµν)δAσ (2.70)

Thus the equation of motion is
∇µFµν = 0 (2.71)

These are Maxwell’s equations (with no charges present) written in relativistic notation. Those of you who
have seen Maxwell’s equation in other courses may find them a bit unfamiliar; where are the electric and
magnetic fields? If you go to flat space and pick a rest frame (i.e. pick a particular choice of time coordinate
t), then they are:

F ti = Ei F ij = εijkBk (2.72)

It is then a soothing exercise that working out (2.71) in components you get the form of Maxwell’s equations
that are on those annoying t-shirts.

Leaving aside Maxwell’s equations, let us now compute the stress energy tensor for the Maxwell field. We
compute the variation with respect to g rather than A to find

δgSEM [A, g] = − 1

16π

∫
d4x

(√
−g (δgµρgνσ + gµρδgνσ)FµνFρσ + gµρgνσFµνFρσδ

√
−g
)

(2.73)

= − 1

16π

∫
d4x
√
−g
(

2gνσFµνFρσ −
1

2
FαβF

αβgµρ

)
δgµρ (2.74)

(Note that you might have been worried that the covariant derivatives in the definition of F (2.65) also
depend on g; however we can write F in terms of partial derivatives if we like, as in (2.67). So there is no
dependence on g there).

So from here we can easily read off the stress-energy tensor:

T (EM)
µρ =

1

4π

(
gνσFµνFρσ −

1

4
FαβF

αβgµρ

)
(2.75)

This is familiar from earlier in the course; it tells you how electromagnetism affects gravity.
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2.5.3 A moving particle

I will mention only one other example. Consider a point particle moving through space. We know how
gravity affects it, but how does it affect gravity? It has a mass and energy, so it should affect gravity (a little
bit!) What is its stress tensor? If we knew the action, we could find the stress-energy tensor.

Plot.

We know this already: the action of a point particle of mass m is actually proportional to its proper time:

S[X] = m

∫
ds

√
−gµν(x)

dxµ

ds

dxν

ds
(2.76)

The prefactor is the mass of the particle. Here s is a parameter along the worldline.

Note by the way that the action is invariant under reparametrizations: i.e imagine picking a different coor-
dinate s′ to parametrize the worldline, where s′ is a function of s: then we have

S[X] = m

∫
ds′

ds

ds′

√
−gµν(x)

ds′

ds

dxµ

ds′
ds′

ds

dxν

ds′
= m

∫
ds′
√
−gµν(x)

dxµ

ds′
dxν

ds′
, (2.77)

i.e. the action takes exactly the same form as a function of the new parameter s′. Note also that computing
its variation with respect to x will just result in the geodesic equation, as you know from the first term.

Now again we can compute the stress-energy of the particle by varying with respect to gµν . This involves
delta functions and will eventually be a homework problem.

2.5.4 A little philosophy

We know that everything feels gravity; in a slightly crude form the equivalence principle states that everything
falls at the same rate, and that means that there is no way to shield something from the effects of the
gravitational field. With our new sophisticated understanding, we understand that this is because freely
falling objects follow geodesics on the metric that defines spacetime.

However it is interesting to note that from our discussion of the Einstein-Hilbert action, we see that not only
does everything feel gravity, gravity also feels everything! Basically1 any term you can write in an action will
involve the metric to tie together indices, but we see that this invariably means that it will contribute to the
stress energy tensor. Thus anything that cares about how big space is or how quickly time ticks will itself
leave its imprint on space and time.

1There is something called a topological field theory that is an exception to this; these are odd objects that do not really
have have any degrees of freedom, and it is a bit philosophical whether or not you want to call them a “thing”.
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3 The Schwarzschild Solution

Now that we know Einstein’s equation, let’s try to solve it. In general this is very difficult, and there are
very few exact solutions known. So we will first try to solve the equations in vacuum, i.e. with Tµν = 0,
for a spherically symmetric and static mass distribution, e.g. outside a star. This will result in a lot of fun,
ending in black holes.

3.0.1 A cute but ultimately wrong calculation

However there is a calculation involved first. As it is a little bit tedious, let’s give ourselves a little treat from
Laplace (in 1796!). Suppose you need to convince a first-year (or a biologist or well-read art historian or
someone else who has studied only Newtonian physics...) that black holes exist. You might say the following:
in ordinary Newtonian gravity, what is the escape velocity of a particle that is a distance R from a mass M?
Recall this is done by energy conservation: the initial situation is a particle in a gravitational potential well
with kinetic 1

2mv
2 and potential energy −GMm

R , and the final situation is a particle at rest at infinity (i.e.
net energy 0). Thus the equation of interest is

1

2
mv2 − GMm

R
= 0 → v2 =

2GM

R
(3.1)

Note: as you make R smaller and smaller, you need a higher and higher velocity to escape. Eventually this
will hit the speed of light c! This happens at the radius

R =
2GM

c2
(3.2)

This suggests that something weird is happening here – apparently if we could compress the sun into a ball
that is sufficiently small, light itself would not be able to escape from the surface due to its gravitational
pull! This suggests that something fun might happen at that radius. Note that in reality this calculation is
wrong, as Newtonian gravity doesn’t apply to things moving close to the speed of light. The true situation
is much more fun.

3.1 Deriving the solution

Being motivated by this, let’s now treat the problem correctly using the full machinery of GR. The equations
are simply

Rµν = 0 (3.3)

Now we solve them. First we need to write down a metric ansatz. What does it mean to be static? This has
a technical meaning that we will discuss later, but for now we will just say that it means that the spacetime
has a time coordinate t and that nothing depends on t and also that there are no cross terms like dtdxi in
the metric.

Next, what does spherically symmetric mean? Again, there is a technical meaning, but recall flat space
written in polar coordinates for a second:

ds2 = −dt2 + dr2 + r2dΩ2 (3.4)

Inspired by this, we will take spherically symmetric to mean that the spacetime has coordinates (θ, φ) and
that the dependence of the metric on these coordinates is via the familiar dΩ2 = dθ2 + sin2 θdφ2. If we were
to alter this it would correspond to squashing the sphere 2.

2The technical meaning of spherically symmetric is: there exists a set of Killing vectors whose Lie brackets form the Lie
algebra of SO(3).
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So in that case, the most general spherically symmetric static metric with the same signature as flat space
takes the form

ds2 = −e2A(r)dt2 + e2B(r)dr2 + e2C(r)r2dΩ2 (3.5)

The exponential form makes certain things a bit simpler: roughly speaking it seems to maintain the signature
of the metric and keeps dt as a time coordinate3. Now we can actually simplify this a bit. Consider defining
a new radial coordinate in the following way:

eC(r)r ≡ r̄ dr̄ = eC(r)(1 + rC ′(r))dr (3.6)

This changes the last term to r̄2dΩ2. In terms of the new coordinate we thus have

ds2 = e2A(r̄)dt2 − e2B(r̄)−2C(r̄)(1 + rC ′(r))−2dr̄2 − r̄2dΩ2 (3.7)

Now these are all just labels: so lets redefine:

r̄ → r e2B(r̄)−2C(r̄)(1 + rC ′(r))−2 → e2B(r) (3.8)

After this series of manipulations we find that the metric becomes

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2dΩ2 (3.9)

Which is exactly the same as (3.5), except that the final e2C(r) has vanished. Physically speaking, we have
decided to pick the radial coordinate r so that the proper area of a constant-r 2-sphere is always 4πr2. This is
nice, because it gives us one less function to worry about. Note there is something mildly deep going on here
– in general relativity, the coordinates themselves have no meaning, and it is only the relationship between
coordinates and metric components that have physical meaning.

This is as far as we can go without doing any work. Now we actually need to solve the equations. So we
should first compute the Christoffels, then the Riemann tensor, then the Ricci tensor. I encourage everyone
to go home and do this. It is a character-building exercise when done in private.

After some algebra we find:

Rtt = e2(A−B)

(
A′2 +

2A′

r
−A′B′ +A′′

)
(3.10)

Rrr = −A′2 +
2B′

r
+A′B′ −A′′ (3.11)

Rθθ = e−2B(−1 + e2B − rA′ + rB′) (3.12)

Rφφ = sin2 θRθθ (3.13)

Rφφ is sin2 θ times Rθθ because of the assumption of spherical symmetry. We now need to set all of these to
zero.

The first thing we do is consider the equation

e−2(A−B)Rtt +Rrr =
2

r
(A′ +B′) = 0 (3.14)

This means that A(r) +B(r) = c. Now note that by rescaling the time coordinate t→ te−2c we can set the
constant c to 0 with no loss of generality. Thus we have B(r) = −A(r).

Next, we plug this into the equation for Rθθ. We find

−1 + e−2A − 2rA′ = 0 (3.15)

(3.16)

3We’ll see later that actually it doesn’t really do a terribly good job of this.
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multiply through by e2A and rearrange to get

e2A(2rA′ + 1) = 1 (3.17)

∂r(re
2A(r)) = 1 (3.18)

This is easy to integrate! We find
re2A(r) = r − rs (3.19)

where rs is an integration constant called the Schwarzschild radius. This is it! We now know e2A(r). We can
now plug this into the original metric ansatz to find the celebrated Schwarzschild metric!

ds2 = −
(

1− rs
r

)
dt2 +

(
1− rs

r

)−1

dr2 + r2dΩ2 (3.20)

Before moving on, did we actually solve all the equations? We solved Rθθ = 0 and thus also Rφφ = 0. We
solved one particular linear combination of Rtt and Rrr; as there are 2 independent equations, to be complete
we also need to solve another linearly independent combination, which we can just take to be (3.10). Since
we have no freedom left, this had better work: indeed plugging in the solution and going through the algebra,
we see that it does.

Mathematically, we are done! Physically, we still need to interpret the meaning of rs. Note that if rs = 0,
we just have flat space. Let’s now consider taking r � rs. In that case the metric is very close to flat space.
Now we know that if a metric is very close to flat space, we can interpret the deviation of gtt from 1 as being
the Newtonian potential:

gtt ≈ −(1 + 2Φ(x)) (3.21)

Now, far outside a mass distribution of mass M , we know that the ordinary Newtonian potential is Φ(r) =
−GMr . Thus this matches nicely, provided we identify

rs = 2GM (3.22)

Thus we find the Schwarzschild metric, in all its glory:

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (3.23)

This is a very simple and profound result, and is one of the most important known solutions to general
relativity. It is equivalent to the Coulomb potential in electrodynamics.

Note that the Schwarzschild radius is actually the same thing that we got from Laplace at the beginning
of lecture! (Note also that I didn’t set c to 1 in that section). As best as I know, this exact equality is a
coincidence, as Laplace did not treat relativistic physics correctly. It looks like something bad is happening
there; indeed, as we will see, this is actually the event horizon of the black hole. It is less bad than it looks.

For the sun, if you plug in the numbers, you find that

rsun =
2GMsun

c2
≈ 3 km (3.24)

for this. This is far smaller than the radius of the sun itself (which is about 700,000 km); recall that our
derivation only works in the vacuum region outside the sun, so it doesn’t work in the interior. Thus we need
not worry about this dangerous radius for the sun or for anything in our solar system, which is what we sill
discuss next.
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3.2 Geodesic motion in the Schwarzschild metric

This explains the gravitational field produced by a large massive object; we now want to understand how
test particles move around it. For example, the sun creates a gravitational field, and we want to see how
the earth (or, as we will see, more interestingly, Mercury) move around it. You can play with an online web
game on my website that lets you fly a spaceship around a black hole here.

3.2.1 Killing vectors and symmetries

First, let’s remind ourselves how Killing vectors work. Recall the geodesic equation: let’s let the geodesic be
a path xµ(s), where the four-velocity is

uµ =
dxµ

ds
(3.25)

Recall from the first term that a geodesic (see e.g. page 12 of first term lecture notes) satisfies

uµ∇µuν = 0 . (3.26)

Now there is something called a Killing vector, which I now remind you of: recall from previous lectures that
a Killing vector satisfies Killing’s equation:

∇µξν +∇νξµ = 0 . (3.27)

If you write it out in coordinates, then it turns out that if the metric is independent of a coordinate x0 then
the vector field ∂

∂x0 is a Killing vector, i.e. ξµ(x) = δµ0 .

This is useful because once you identify the Killing vectors, the quantity

Qξ ≡ ξµuµ (3.28)

is a conserved quantity, which turns out to be constant along a geodesic xµ(s):

d

ds
Qξ(s) =

dxµ

ds
∇µQξ(s) = uµ∇µ(ξρu

ρ) (3.29)

= uµ ((∇µξρ)uρ + ξρ∇µuρ) (3.30)

= uµ
(
uρ

1

2
(∇µξρ −∇ρξµ) + 0

)
(3.31)

= 0 (3.32)

where in the last equality I used Killing’s equation (3.27) on the first term and the geodesic equation (??)
on the last term. The upshot is that whenever the metric doesn’t depend on a coordinate, we can identify a
conserved quantity.

I will point out that this is an example of a much deeper phenomenon. The fact that the metric doesn’t
depend on (say) x0 means that gµν(x0 + a) = gµν(x0): in other words, there is a symmetry under the
operation

x0 → x0 + a (3.33)

i.e. translations in x0. In physics, symmetry almost always leads to a conserved quantity such as Qξ above:
the precise connection is something called Noether’s theorem, which you may remember from courses on
classical mechanics. Killing vectors may be thought of as an example of Noether’s theorem.

18

https://www.nabiliqbal.com/visualizations


3.2.2 Solving the geodesic equation

We now want to solve the geodesic equation. I will sometimes write the 4-velocity as uµ = ẋµ, where an
overdot denotes a derivative with respect to s. Now recall from the first half of the course that if we are
solving the geodesic equation, we always pick the parameter s so that the velocity along the worldline has
magnitude 1, i.e.

gµνu
µuν = gµν ẋ

µẋν = −ε ε = 1, 0 (3.34)

and where ε is a constant that we take to be either 1 for timelike paths (i.e. that paths followed by massive
particles) or 0 for null rays (i.e. the path followed by light rays). This remind you, this can always be
arranged by a choice of s, and a choice of s for which this is true is called an affine parametrization..

With this choice of s, the geodesic equation becomes:

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 (3.35)

We can now explicitly calculate the θ equation to be

2
d

ds

(
r2θ̇
)

= 2r2 sin θ cos θφ̇2 (3.36)

(we can get this e.g. from the Christoffels). Note now that θ(s) = π
2 , θ̇(s) = 0 is a solution to this equation.

Physically, this means that if the orbit starts out in the equatorial plane, it will stay in the equatorial plane.
This is a consequence of the conservation of the direction of angular momentum.

Now we could write out the other Euler-Lagrange equations for (t, r, φ); however this is a pain. We will instead
use conserved quantities. In fact, there is almost always a 2-step process to solving geodesic equations that
we use:

1. Identify the conserved quantities. In our case there are two obvious Killing vectors. One is time
translation:

Hµ = (∂t)
µ = (1, 0, 0, 0) (3.37)

which leads to the conserved quantity

K = Hµu
µ =

(
1− 2GM

r

)
ṫ (3.38)

You can think of this is as the energy of the particle. Is it kinetic energy or potential energy? In general
relativity, this distinction does not really make sense – but nevertheless it is a conserved quantity.

The other Killing vector is associated with translations of φ, or rotations around the 2-sphere:

Rµ = (∂φ)µ = (0, 0, 0, 1), (3.39)

whose associated conserved quantity is angular momentum:

J = Rµu
µ = r2 sin2 θφ̇ = r2φ̇ (3.40)

where the last equality holds because we are restricting to the equatorial plane θ = π
2 . Note that if

J 6= 0 then the particle is always moving in φ.

2. Use the normalization of the four-velocity. Remember that we have(
1− 2GM

r

)
ṫ2 −

(
1− 2GM

r

)−1

ṙ2 − r2(φ̇2) = ε (3.41)
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Note now that we can use the conservation laws to express ṫ in terms of K and φ̇ in terms of J . This
leads to

K2(
1− 2GM

r

) − ṙ2(
1− 2GM

r

) − J2

r2
= ε (3.42)

This is already nice; instead of having three functions of s, we now only have one: r(s). It is easier to
understand what this equation means if we rearrange it into the following form

1

2
ṙ2 +

1

2

(
1− 2GM

r

)(
J2

r2
+ ε

)
=

1

2
K2 (3.43)

This is useful because it is of exactly the form for the conservation of energy of a particle moving in a
1d potential V (r) with an effective energy E:

1

2
ṙ2 + V (r) = E V (r) =

1

2

(
1− 2GM

r

)(
J2

r2
+ ε

)
E =

1

2
K2 (3.44)

Note that E here is just a name for the effective energy in this potential. As we have a lot of intuition
for such things, we can now plot the potential V (r) and understand what is happening with the particle.

For the rest of this section we will set ε = 1 and study timelike geodesics.

Note that if we expand it out we get

V (r) =
1

2

(
ε− 2GMε

r
+
J2

r2
− 2GMJ2

r3

)
(3.45)

It is an interesting fact that if we were studying the orbits of planets in ordinary Newtonian gravity, we would

have gotten exactly the same equation (3.44) except that the J2

r3 term at the end would have been missing.
Note that this term is not very important far away from the center (and hence again we recover Newtonian
physics at weak-fields, etc. etc.).

A plot of the potential for a typical value of J is shown in Figure 3.1. At r = 2GM the potential is always
zero. This is a signature of the black hole; we will come back to this. If we had been doing Newtonian gravity
instead the potential would have gone up forever as we approached r = 0. The precise shape depends on the
value of the angular momentum.

The behavior of the particle depends on the value of the energy K. The different sorts of orbits are shown
in Figure 3.2. For example, if K is such that the particle sits exactly at the bottom, then we have a circular
orbit with radius rc (case A).

If we now increase the energy a little bit, then r can vary, and we have a non-circular orbit. I want to point
out that it actually isn’t a pure ellipse! (case B). We will come back to this later.

If we increase the energy still further, then its a bit different – it is no longer a bound orbit, instead the
particle comes in from infinity, comes up to a minimum radius rmin, and then goes out again; note there is
no maximum r any more (case C)
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Figure 3.1: Effective potential V (r)

Figure 3.2: Different sorts of possible orbits around Schwarzschild metric.
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3.2.3 Circular orbits

Let’s be a bit more quantitative. When can we have a circular orbit? Only when V ′(r) = 0. We directly
calculate

dV

dr
=

1

r4

(
−J2r +GM(3J2 + r2)

)
(3.46)

Thus we have a stationary point rc when we have a solution to the quadratic equation above, which turns
out to be at

rc =
J2 ±

√
J4 − 12G2M2J2

2GM
(3.47)

So when J is big enough, there are two roots to this equation; one of them is a stable circular orbit and the
other is an unstable one. See pictures. If we make J very large then we can see that

rc(J →∞) ≈
(
J2

GM
, 3GM

)
(3.48)

The stable one is further out; it is analogous to the stable orbits that you have studied before in Newtonian
physics (and indeed its radius is given by the usual Newtonian formula). The unstable one is a new thing
from general relativity. It corresponds to something orbiting around, but the slightest touch on it will either
send it spiralling into the black hole or out to infinity.

Now let’s start decreasing J . If we make J smaller and smaller, the two roots get closer and closer together.
Eventually the argument of the square root is zero, and the two roots collide and vanish. This happens at

J = 2
√

3GM (3.49)

for which we have
rc = 6GM (3.50)

This is thus the location of the innermost stable circular orbit, or ISCO. You cannot orbit stably any closer
than this, although you can orbit unstably up to r = 3GM .

Note that it is thus totally clear that for sufficiently small angular momentum you will just fall straight into
the black hole, because the potential is monotonic. This makes sense; essentially for small J the angular
momentum is small.

One can repeat this analysis for light rays; we’ll do this in the next section.

3.3 Solar system tests

Now we will discuss how the physics of the Schwarzschild metric can result in actual observable consequences.
We will discuss three experimental observations; the deflection of light by the gravitational field, the red-shift
of light, and the precession of the perihelion of Mercury.

3.3.1 Deflection of light

We know that light falls towards gravitational fields.

Here we will calculate precisely how much it falls. From the picture we see that we care about the dependence
of φ on r. For null geodesics from before (setting ε = 0) we have

J = r2φ̇ ṙ2 = K2 − J2

r2

(
1− 2GM

r

)
(3.51)
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Figure 3.3: Deflection of light by a gravitational field

Now define the following quantities:

u ≡ 1

r
b ≡ J

K
(3.52)

b is called the “impact parameter”; we will see why in a second. Now we can work out

du

dφ
=
du

ds

ds

dφ
= − ṙ

r2φ̇
=
ṙ

J
(3.53)

Plugging in the value of ṙ from above and manipulating a little bit, we find(
du

dφ

)2

=
1

b2
− u2 + 2GMu3 (3.54)

As always, any real-life equations are too hard to solve. We must develop some kind of expansion. Note that
the last term here is the contribution from general relativity; we may assume that it is small.

For a second, suppose we drop it. Then the Newtonian equation is(
duN

dφ

)2

=
1

b2
− (uN )2 (3.55)

whose solution is

uN =
1

b
sinφ . (3.56)

Here N stands for “Newtonian”. This is a straight line in polar coordinates, whose closest approach to the
sun is b (the “impact parameter”), as shown in Figure 3.3. Note that it seems that Newton would say that
light doesn’t fall at all. Now we see what Einstein has to say: we will look for a solution of the form

u =
1

b
sinφ+ v (3.57)

where v is small. Here “small” means that we assume that

v ∼ O(G), (3.58)

just like the GR term above. Plugging this into (3.53) we find(
1

b
cosφ+ v′

)2

=
1

b2
−
(

1

b
sinφ+ v

)2

+ 2GM

(
1

b
sinφ+ v

)3

(3.59)

23



Now we keep terms that are only O(G1); this means we can throw away terms like v2, vG, v3, etc. etc. Note
that all terms that are O(G0) cancel because we picked uN to satisfy the leading equation! After all the dust
settles we find the following first order ODE:

(cosφ) v′ + (sinφ) v =
GM

b2
sin3 φ (3.60)

We can solve this with an integrating factor. I know that the answer is

v(φ) =
GM

b2
(
1 + cos2 φ

)
(3.61)

(Check if you like!)

Now we need to figure out what this means; refer to Figure 3.3. We need to determine the angle φ(∞); at
r →∞, which means that u→ 0. We can then expand the cos and sin using their Taylor expansions around
φ = 0:

sin(φ→ 0) ≈ φ+ · · · cos(φ→ 0) ≈ 1− 1

2
φ2 + · · · (3.62)

So from the geometry we see that at infinity

u = 0 =
1

b
sinφ+

GM

b2
(
1 + cos2 φ

)
≈ φ

b
+

2GM

b2
(3.63)

which means that

φ(∞) = −2GM

b
(3.64)

We get an equal contribution from the other end; thus the full angular deflection is

∆φ =
4GM

b
(3.65)

Now suppose we want to measure this! What do we do? The biggest mass around is the sun, we should use
that; we can wait for stars to pass behind it and see if we can measure the deflection of the light. The signal
is biggest when the light passes right by the sun (so that the impact parameter is the radius of the sun itself.)
At that point we find

∆φsun = 8.45× 10−6 rad (3.66)

or 1.75 arcseconds, as they say. This is small, but visible. There is only one problem; you can’t see the stars
when they are behind the sun.

So you wait for an eclipse! And on May 29, 1919 that is precisely what Sir Arthur Eddington did, from the
island of Principe off the coast of West Africa. And he took pictures of the sky. And lo and behold, if you
compare where each star is with where it normally is, indeed they appear “askew” by precisely this amount.

It’s really quite amazing.

3.3.2 Precession of the perihelion of Mercury

As we have discussed earlier, orbits in Newtonian gravity are a bit special; due to the fact that the attractive
Newtonian potential is exactly Φ ∼ 1

r , orbits close exactly, and bound orbits form ellipses. This is not true
any longer in general relativity; the attractive force differs slightly from that of Newtonian gravity, and thus
we expect the perilhelion of orbits to precess, as shown in Figure 3.4. The calculation isn’t too bad but is a
little boring to do on the board, so in the homework for next week you will calculate this and show that it is

δφ ≈ 6π(GM)2

J2
(3.67)
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Figure 3.4: In Newtonian physics, orbits are closed ellipses. In general relativity, the perihelion precesses (for
solar system applications, the picture is greatly exaggerated).

Now let’s turn to real life. Astronomers have kept very close track of the movement of planets, and it was a
fact in the early twentieth century that the perihelion of Mercury was observed to advance 5600 arc seconds
per century. Now this can actually come from a number of different sources; for example, all the other planets
pull on it (Jupiter contributes 153” or so). But after you subtract off all of the known effects, there are 43”
left over.

This had happened before; there was a similar problem with Uranus, and from this a 17th century astronomer
predicted the existence of Neptune. Similarly, people thought that there was another planet called Vulcan
between the sun and Mercury. But oddly, no one ever saw it.

So now, go home and plug in the numbers into the formula above; you find exactly 43”. Too bad for Vulcan,
but hooray for GR.

3.3.3 Redshift of light

Imagine that you are a ray of light, or a particle of light (called a photon) trying to escape from a gravitational
field. You are clawing your way up; you will lose energy because of the attraction of gravity. As you’re a
photon this does not slow you down; but because of quantum mechanics we know that E = ~ω, and thus
your frequency will go down. This is called the redshift of light.

Let me say the same thing in different language. Let’s imagine that you are at a radius ri and you are
Skyping with someone at ro; your friend will see you moving in slow motion, by the arguments before. This
is gravitational time-dilation. Let’s derive this effect.

Consider two observers, each at fixed radius ri and ro and the same θ, φ. Their proper times are si, so. Note
that the worldline of the inner observer has(

1− 2GM

ri

)(
dti
ds

)2

= 1 → ti =

(
1− 2GM

ri

)− 1
2

si (3.68)

We have exactly the same equation for the outer observer with i→ o.

Now suppose the inner observer sends a light ray. We will imagine that he sends two light rays with a
difference in proper time ∆si, and we will see what the observed difference in proper times ∆so is at the
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Figure 3.5: Geometry for deriving the redshift of light.

other end. The setup is shown in Figure 3.5.

The light rays travel along a null geodesic(
1− 2GM

r

)
dt2 =

(
1− 2GM

r

)−1

dr2 → dt

dr
=

1(
1− 2GM

r

) (3.69)

which we can integrate to find that

t = f(r) =

∫ r

dr′
1(

1− 2GM
r′

) (3.70)

It turns out we won’t actually need the form of f(r). So the point is that along the geodesic t − f(r) is
constant along the geodesic. So if the signal is sent at ti and received on the other end at to, then we have

ti = to − f(ro) + f(ri) (3.71)

Now using (3.68) we find that the difference in proper times is(
1− 2GM

ri

)− 1
2

si =

(
1− 2GM

ro

)− 1
2

so − f(ro) + f(ri) (3.72)

From here we can immediately read off what ∆so is from ∆si. I’ll write the answer in terms of the red shift
of frequencies, which is the inverse of the shift in proper times:

ωo
ωi

=
∆si
∆so

=

√√√√1− 2GM
ri

1− 2GM
ro

(3.73)

Ok; so note that if ro > ri, then the observed frequency is less.. In other words, near the earth, if you
hold your cell phone below you so that the photons have to climb up to reach your face, the screen should
look redder. Can you see it? Well, no. The effect is tiny. Nevertheless, it was done in an experiment in
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Cambridge, Massachusetts by Pound and Rebka. The height of the tower that they used (the physics building
at Harvard) was ∆r = 22m, so the signal they were looking for was a redshift of

ωo
ωi
≈ 1− GM

r2
∆r ≈ 1− 2.4× 10−15 (3.74)

The fractional redshift is tiny.

3.4 The Black Hole Horizon

In this section we now finally approach the Schwarzschild radius at r = rs ≡ 2GM . Note that we can already
see that something dramatic is happening; let us imagine that we have two observers (and let us call them
Romeo and Juliet), and Romeo sits at ro above while Juliet is at ri. As Juliet approaches r = 2GM , we see
that Romeo perceives her moving more and more slowly, i.e. the red-shifted frequency is going to zero. So it
is clear that something dramatic is happening.

Now we try to understand what happens. Note that the metric is

ds2 =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2dΩ2 (3.75)

There are two points where something bad seems to happen: at r = 2GM (called the event horizon) and at
r = 0. These are two different kinds of singularity:

Coordinate singularity: The geometry is well-behaved at that point, but that we chose coordinates badly.
Coordinate singularities can be removed through a redefinition of coordinates. We will repair the singularity
at r = 2GM .

Curvature singularity: a place where the geometry is actually singular, e.g. infinitely curved. No redefi-
nition of coordinates can cure it. One way to exhibit a curvature singularity is by finding a scalar curvature
invariant that blows up. We can’t use the Ricci scalar R (because it is zero), but we could use e.g.

RµνρσRµνρσ =
48G2M2

r6
(3.76)

which is a scalar that blows up at r = 0 (but, notice, not at r = 2GM). Thus r = 0 is actually bad; as this
is a scalar, it is the same in all coordinates, and no redefinition will fix it.

3.4.1 Eddington-Finkelstein coordinates

We move on to the coordinate singularity. To understand what is happening we need to revisit the idea of
light cones. Consider for example flat space:

ds2 = −dt2 + dr2 + r2dΩ2 (3.77)

Think about light rays coming from r = 0; they all follow t = ±r, which looks like Figure 3.6.

Note that timelike trajectories – that is, people, rocket-ships, etc. – must stay in the interior of the light
cone. Thus the light cones define the boundary between where you can and cannot go.

We will now try to build light cones for the Schwarzschild metric. This is found from solving

−
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 = 0 → dt

dr
= ±

(
1− 2GM

r

)−1

(3.78)
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Figure 3.6: Light cones in flat space; they follow t = ±r, and each circle shown is actually an S2

Note that as we approach the horizon, the dt
dr is diverging, and thus light cones are becoming more and more

narrow! Something odd is happening. Note that as Juliet heads in, her signals find it harder and harder to
reach Romeo.

However her light rays also find it harder and harder to move in; it turns out that this is an artifact that has
to do with a lousy choice of the r coordinate. A way to repair this is to “follow the geodesics”. The first step
is to integrate (3.78) to find

t = ±r∗ + const
dr∗

dr
=

(
1− 2GM

r

)−1

(3.79)

which we can easily integrate to find

r∗ =

∫ r

dr′
(

1− 2GM

r′

)−1

= r + 2GM log
( r

2GM
− 1
)

(3.80)

r∗ is just a different radial coordinate that is naturally adapted to the black hole horizon. Note that the
horizon is at r∗ = −∞ – that’s why you sometimes hear r∗ called the “tortoise coordinate.”

Now we adopt new coordinates that are well suited to these light rays.

v = t+ r∗ (3.81)

u = t− r∗ (3.82)

An ingoing light ray satisfies v = const and an outgoing light ray satisfies u = const. Now we will use v and
r as coordinates. We need to rewrite the metric; using:

dt = dv − dr∗

dr
dr = dv −

(
1− 2GM

r

)−1

dr (3.83)

We find that the Schwarzschild metric becomes

ds2 = −
(

1− 2GM

r

)
dv2 + 2dvdr + r2dΩ2 (3.84)
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Figure 3.7: Light cones in Schwarzschild coordinates (t, r)

These are called ingoing Eddington-Finkelstein coordinates. Here actually nothing bad happens at all at
r = 2GM ; the dv2 term vanishes, but this does not matter. Note that light rays satisfy(

1− 2GM

r

)
dv2 − 2dvdr = 0 (3.85)

which means
dv

dr
= 0

dv

dr
= 2

(
1− 2GM

r

)−1

(3.86)

Figure 3.8: Light cones in Eddington-Finkelstein coordinates (c, r)

Thus we see that the light cones are tipping, as shown in Figure 3.8! Now we can see precisely what is
happening. For r > 2GM the light cones permit null rays to go both towards positive r and towards negative
r; light can both go in and come out. But as we approach r = 2GM , it begins to tip, and at r = 2GM , one
of the edges becomes vertical; this means that light can just barely make it out.
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Figure 3.9: Maximally extended black hole in Kruskal-Szerkes coordinates.

For r < 2GM , all is lost; the light cones point towards negative r. This means that light can no longer come
out of the black hole; it only falls in. Of course, all timelike trajectories are bounded by the light cone: thus
they will also all move towards the interior.

So once Juliet crosses the event horizon at r = 2GM , all is lost: the very causal structure of spacetime will
not permit her to escape, and no matter the strength of her rocket engines, she can no more make it out to
Romeo than she can go back in time. The event horizon may be defined as the surface across which nothing
can escape back out to infinity.

Finally, note that the fact that all timelike trajectories move towards decreasing r basically means that r has
become a timelike coordinate; we could have guessed this from the original form of the metric, as its clear
that the sign of the dr2 term and the dt2 term switch when we cross the horizon.

30



3.4.2 Kruskal-Szerkes coordinates

Recall that we followed ingoing geodesics into the black hole, and we found that we could change coordinates
to get a smooth metric across the horizon. As it turns out, we get a similar answer if we follow outgoing
geodesics; though it is not obvious, it turns out you end up in a different place. To explain what this means,
and to help explain the causal structure of the spacetime behind the horizon and the horizon itself, we will
do yet another change of coordinates, to so-called Kruskal-Szerkes coordinates (T,R).

The transformation is the following:

T =
( r

2GM
− 1
) 1

2

exp
( r

4GM

)
sinh

(
t

4GM

)
(3.87)

R =
( r

2GM
− 1
) 1

2

exp
( r

4GM

)
cosh

(
t

4GM

)
. (3.88)

In terms of these coordinates the metric becomes (after some algebra, which you can check at home)

ds2 =
32G3M3

r
e−

r
2GM

(
−dT 2 + dR2

)
+ r2dΩ2 (3.89)

Note that there are still some r’s floating around; we should imagine that r is determined implicitly from
T,R by

T 2 −R2 =
(

1− r

2GM

)
e

r
2GM (3.90)

These coordinates cover the whole spacetime nicely and so illuminate many of its confusing features. Impor-
tantly, note that light rays in these coordinates follow the lines

T = ±R (3.91)

So they follow straight lines; this makes the causal structure easy to understand.

Note also that the horizon at r = 2GM looks perfectly normal and in fact boring; nothing in particular is
happening to the metric (3.89) there. This means that we are completely free to follow the (T,R) coordinates
past the horizon.

So let’s draw a picture of the spacetime in T,R coordinates. First, let’s note that

T

R
= tanh

(
t

4GM

)
(3.92)

So a constant t-line maps to a straight line in the T,R plane: interestingly, as t runs from −∞ to +∞, the
slope runs from −1 to 1.

How about constant-r? From (3.90) we see that constant-r slices map to hyperbolae in the T,R plane. As
we approach r = 2GM , these hyperbolae degenerate and become the two straight lines:

T 2 −R2 = 0 r = 2GM (3.93)

Note also that the singularity at r = 0 is

T 2 −R2 = 1 r = 0 (3.94)

Putting all of this together, we end up with the following picture for what is called the Eternal Black Hole, or
the Maximally Extended Schwarzschild Spacetime. There is a lot going on here, so let’s discuss it carefully.
We call the regions in the picture I, II, III, and IV . So let’s discuss them all in turn:
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1. Region I: this is r > 2GM , −∞ < t < ∞, so outside the horizon. This is the region that is covered
properly by the original coordinate system. Let’s first look at the worldline of someone hovering outside
the horizon at fixed r. Picture. Note that as the original time coordinate t goes from −∞ to +∞, we
stay in this quadrant. This is what we mean when we say that the coordinate system only covers the
region outside the horizon.

2. Horizon: now the horizon is r = 2GM , which is these two lines. Let us focus on the part adjoining
Region I for now. Note that it comes in two halves, called the past horizon and the future horizon.
Note also that the horizon is not a timelike surface, unlike any other constant r surface outside the
horizon; instead it is null, i.e. of its three tangent vectors, two are spacelike (the θ, φ directions), and
the other is null. Now if we take a timelike trajectory and follow it into the future through the horizon,
eventually we end up in:

3. Region II: This is where you end up if you fall into the black hole, or if you follow an ingoing null
geodesic like we did last lecture. This is where Juliet ended up last time. Note that in this picture
it is especially clear that you can’t come out of the horizon again, because the light cones are very
easy to understand. Next, note that once you’re inside, any timelike trajectory will ultimately hit the
singularity at r = 0.

Let us dwell on this for a moment. Not only can you not escape to the outside of region I, you can’t
even help yourself – you will always be drawn towards the singularity. This is because the singularity
is not a point in space – it is a spacelike surface, and it is thus a moment in time, which should be
clear from the picture. Once you enter the horizon, you can no more escape the singularity than you
can cease to grow older. That is why the singularity is such a horrifying thing.

It is possible to calculate how much proper time you have once you enter – it depends on how quickly
you fall in, but the answer is always of the order of GM .

4. Region III: This is the time-reverse of Region II. It is there because our metric is symmetric under
time-reversal; thus whatever is there in the future is also there in the past. You may think of it as a
region from which stuff always comes out and never goes in. This is where you end up if you follow
outgoing null geodesics through the horizon rather than ingoing ones like we did.

5. Region IV: This might be the most confusing of all. What is this? Naively it looks like something
that is precisely like Region I; but remember, region I was the entire region of asymptotically flat space
outside the event horizon. This is the same: it is an entirely different region of asymptotically flat space
that is connected to this one. The Schwarzschild metric does not actually describe a hole in spacetime;
it represents it two different spacetimes that are connected. The connection between the two regions is
called the Einstein-Rosen bridge. If I were to draw a picture of a spatial slice at this time, it looks like
Figure 3.10.

Can you move from Region IV to Region I? If we could, it would be great! We could use these bridges
to travel faster than light, Star Trek, Interstellar, etc. etc. Actually however you cannot; this is clear
from the picture, once you enter this region you always hit the singularity. The Einstein-Rosen bridge
is a lousy bridge, in that geodesics connecting the two sides are always spacelike. Too bad.

There are theorems that prove that you cannot have a traversable wormhole given some reasonable
conditions on the stress energy tensor Tµν (basically that energy is always positive).

This is the full structure of the Schwarzschild metric. Note that from here we can now finally draw a global
picture of the fate of Romeo and Juliet. If Juliet falls into the black hole, her worldline goes like this, and
Romeo’s looks like this. Picture.

Now let me describe in words what Romeo sees; he can never actually see Juliet fall in, because any light
ray she sends as she crosses never makes it out! This means that her last few signals will be stretched out,
taking longer and longer to reach him. From his point of view, he sees her moving more and more slowly,
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Figure 3.10: Picture of spatial topology at T = 0 for maximally extended spacetime

until she freezes entirely on the black hole horizon. For all of eternity, as long as he lives, she will remain
frozen on the horizon. Romantic.

From her point of view, on the other hand, she simply falls in. It takes her finite proper time. She hits
the singularity and dies. Let us now calculate how exactly she dies. Note that we assume that she follows
a geodesic, but it turns out that the gravitational force on her feet will be much stronger than that on her
head, eventually pulling her apart.

Recall from the first term the equation of geodesic deviation, which says that if you have two neighbouring
geodesics separated by a vector Sµ where Uµ is the velocity along the geodesics, then

Uµ∇µ
(
Uλ∇λSν

)
= RνρµλU

µUρSλ (3.95)

Take now Sµ to be a vector pointing from the head of Juliet to her feet, as in Figure 3.11. The way to
understand this is that

d2

ds2
S ∼ R× S (3.96)

i.e. the acceleration of S is roughly measured by the Riemann tensor, which tells you the acceleration gradient
that Juliet feels.

Figure 3.11: Juliet falls into a black hole while a vector Sµ points from her head to her feet.

In other words, we need to ask how much of an acceleration gradient can a human being handle before being
pulled apart? If you google this, it says that 65 g’s of acceleration will kill someone. Over Juliet’s 2 m person,
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this corresponds to an acceleration gradient of

65× 9.8m s−2

2m
≈ 300s−2 (3.97)

We should set this equal to the Riemann tensor, whose entries typically have magnitude

R··· ∼
√

48

(
GM

r3

)
(3.98)

Putting in the numbers for a solar mass black hole, we find that the force is fatal when

rsun, fatal ≈ 1400km (3.99)

But rs for a solar mass black hole is 3km; thus Juliet does not even make it to the horizon before she gets
ripped apart.

What if we took a bigger black hole? There is a black hole at the center of the galaxy with mass four million
times that of the sun. It is called Saggitarius A∗. If we use that we find,

r
A∗,fatal ≈ 240, 000km (3.100)

which should be compared to its Schwarzschild radius, which is about 12 million km. So there you can make
it pretty far inside before you are killed by the tidal forces.

3.4.3 Other kinds of black holes

The picture above is amazing. But does it really exist? Do black holes exist in real life?

There are thought to be many. Essentially a star in the sky is a controlled explosion; it is a nuclear bomb
that is trying to explode while gravity keeps it in. Once it runs out of fuel, then gravity takes over and pulls
it inwards. If the star is big enough, it can collapse to become a black hole. One of these is at centre of our
galaxy, called Saggitarius A*.

Do those look like the picture? Actually, they do not. The reason is that in the past the spacetime is replaced
by the star region, so there is no past horizon. There is also no other spacetime connected to it. Thus we
only have one half and the future horizon.

There is a lot more that can be said about black holes. I will just mention some more quick facts without
extensive derivation. It is possible to have a charged black hole; this is a solution to Einstein’s equations
coupled to electromagnetism. You will recall the stress tensor for electromagnetism from Lecture 4 of this
term. Putting it in the Einstein equation we find:

Rµν −
1

2
gµνR =

1

4π

(
−gνσFµνFρσ +

1

4
FαβF

αβgµρ

)
(3.101)
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It is possible to solve this; I will not do this here, but the answer is called the Reissner-Nordstrom black hole,
and its metric is:

ds2 = −
(

1− 2GM

r
+
G

4π

Q2

r2

)
dt2 +

(
1− 2GM

r
+
G

4π

Q2

r2

)−1

dr2 + r2dΩ2 Frt =
Q

r2
(3.102)

Here Q is the charge of the black hole. Note that the electric field carries energy, and that energy sources
spacetime curvature; that is why the metric depends on Q.

There are also Kerr black holes, which are black holes that are rotating and so carry angular momentum J .
They have a metric that is a little intricate, so I wrote it down already.

ds2 = −
(

1− 2GMr

ρ2

)
dt2 − 4GMar sin2 θ

ρ2
dtdφ+

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[(
r2 + a2

)2
+ a2∆ sin2 θ

]
dφ2

(3.103)
where the different things are

∆(r) = r2 − 2GMr + a2 ρ2(r, θ) = r2 + a2 cos2 θ a =
J

M
(3.104)

J is the angular momentum. You can also have both charge and angular momentum.

Now you might ask: is there anything else? Are there other kinds of black holes in our universe? As a matter
of fact, there are not. There is something called the No-Hair Theorem, which says that

Time-independent, asymptotically flat black hole solutions to general relativity coupled to electromagnetism
are fully characterized by the parameters of mass, electric charge, and angular momentum.

In other words: a black hole depends only on three numbers. This should be compared with the situation for
ordinary objects: the spacetime outside the earth, for example, depends on all the details of the surface of
the earth, its mountains and valleys and mass distributions, etc. Relativists call this sort of data the “hair”
of the solution. This is simply not the case for a black hole; it does not depend on anything but its mass,
charge, and angular momentum.

This is a very baffling statement. It suggests that black holes are in many ways the “simplest” objects in
physics, because what I have written down is the full story; there is nothing else. I will close the chapter on
black holes by quoting how the eminent astrophysicist S. Chandrasekhar felt when he realized this:

In my entire scientific life, extending over forty-five years, the most shattering experience has been the re-
alization that an exact solution of Einstein’s equations of general relativity, discovered by the New Zealand
mathematician, Roy Kerr, provides the absolutely exact representation of untold numbers of massive black
holes that populate the universe. This shuddering before the beautiful, this incredible fact that a discovery
motivated by a search after the beautiful in mathematics should find its exact replica in Nature, persuades me
to say that beauty is that to which the human mind responds at its deepest and most profound.
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4 Cosmology

We now turn to a study of the universe at the longest possible scales – i.e. cosmology, or a study of the
universe as a whole, e.g. we know that it is expanding, and this is what we will now describe, calculating
things like how the universe began, etc. etc.

First, a few words on units and scales. The basic astronomer unit is the parsec, with 1 parsec = 3× 1016 m
or 3.26 light years. To give you a sense of scale, the distance between galaxies is on the order of megaparsecs
(Mpc), and the observable region of the universe is about 104 Mpc. In cosmology we study physics on scales
that are of a typical size 100 Mpc or more; so the typical region that we study has many many galaxies in it.

The fact that we are studying physics on such long scales actually simplifies life a lot. To us, the universe
seems like it depends on space (e.g. right here, we have the earth, but move a few million km to the left and
we have empty space!). However, if you zoom out to cosmological scales, then you start to lose track of these
fine-grained inhomgeneities, and the universe starts to look smooth again.

4.1 Kinematics: FRW metrics

To that end, we will make two assumptions about the spatial metric of the universe on long distance scales:

1. Isotropy: this means that if you look around the universe looks the same at all angles, i.e. there is no
preferred spatial direction. This is the same as spherical symmetry, which we have encountered before.

2. Homogeneity in space: this means that the universe is the same at all spatial points.4

Philosophically, these ideas go back to Copernicus, and are some times called the Copernican principle
(after his idea that the earth is, in fact, not the center of the universe). Note that these two ideas are logically
distinct; for example, a cone is isotropic about its vertex, but clearly not homogenous, whereas a cylinder is
homogenous but not isotropic.

Let’s now implement these two assumptions mathematically to write down the most general metric that we
need to describe the universe. We call the time direction t as usual, and the remaining 3 directions are xi.
Before using the two conditions above, the most general metric is

ds2 = −A(t, xi)dt2 +Bi(t, x
i)dtdxi + hij(t, x

i)dxidxj (4.1)

Isotropy implies that there no preferred spatial direction: but if Bi was nonzero it would define one, so
Bi = 0. Similarly homogeneity means that A cannot depend on xi. Thus the term is just A(t)dt2, and by
redefining dt→ 1√

A
dt we can absorb it into the dt2 term.

Naively, one would conclude that homogeneity means that hij(t, x
i) would not depend on xi at all. Actually,

as we will see, this is not quite true: instead it means that the dependence on time in hij(t, x
i) must be an

overall factor, so we have the simpler:

ds2 = −dt2 + a(t)2γij(x
i)dxidxj (4.2)

where a(t) is called the scale factor.

Now let us focus on the spatial 3-metric γij . We know that it is isotropic and homogenous. How many
homogenous and isotropic 3-manifolds are there? Isotropic (i.e. spherically symmetric) means that if we put

4To be more precise: given two spatial points p and q, there is a coordinate transformation that leaves the metric invariant
and maps the point p to q. For example in flat space R3 translations xi → xi+ai move you all around the manifold, and clearly
leave the metric invariant.
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down polar coordinates we have

dσ2 = γijdx
idxj = exp(2B(r))dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (4.3)

where the reasoning is the same as in the Schwarzschild case. What are possible choices for B(r)? Here we
use homogeneity. Recall that we want the metric to be the same everywhere.

We now calculate the 3d Ricci scalar associated to the 3d metric γij : a short calculation yields:

(3)R = γij
(

(3)Rij

)
=

2e−2B

r2

(
−1 + e2B + 2rB′

)
(4.4)

Now because the spatial metric is homogenous, the Ricci scalar must be a constant. Next, let’s note that if
we rescale the spatial metric by a number λ > 0, then the Ricci tensor and the 3d Ricci scalar transform as

γij → λγij
(3)Rij ∼ ∂γ−1∂γ (unchanged) (3)R→ λ−1

(
(3)R

)
(4.5)

Why am I keeping λ > 0? If λ < 0, then the signature of the spatial metric will change, and I don’t want to
do that.

If we perform such an operation, then we thus rescale the Ricci scalar by a positive number. Note that the
overall size of the spatial metric is in the scale factor anyway. Thus we can set the 3d Ricci scalar to one of
three values:

(3)R = 6κ κ = +1,−1, 0 (4.6)

Now let us view (4.4) as an equation for B(r). Its general solution is (check!)

e2B(r) =
1

1− κr2 − cr−1
(4.7)

with c an integration constant. Note however, that if c 6= 0 then we have a singularity at r = 0; we don’t
want such a singularity at the origin of polar coordinates, so we set it to 0. Thus at the end of the day, we
conclude that the homogenous, isotropic spatial metrics are:

dσ2 = γijdx
idxj =

dr2

1− κr2
+ r2

(
dθ2 + sin2 θdφ2

)
κ = 0,±1 (4.8)

Now we discuss the three cases separately:

1. Flat space: κ = 0: this is just flat space, R3.

2. Closed universe: κ = +1: this is

ds2 =
dr2

1− r2
+ r2

(
dθ2 + sin2 θdφ2

)
(4.9)

It turns out this is actually a 3-dimensional sphere S3. To understand this, consider the coordinate
transformation

dr√
1− r2

= dχ → sin−1(r) = χ (4.10)

so the metric is then
ds2 = dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2

)
(4.11)

From here, we can see that what is happening is that at each point in χ there is a 2-sphere: χ ∈ [0, π],
and the 2-spheres get bigger and then get smaller. This is basically the definition of a 3-sphere. Note
that in this case, the universe is compact, and thus it is called closed.
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Figure 4.1: An S3 is a series of S2’s that get bigger and then smaller again.

3. Open universe: κ = −1. In this case the spatial geometry is a negatively curved manifold called the
hyperbolic 3-space, or H3, with metric:

ds2 =
dr2

1 + r2
+ r2

(
dθ2 + sin2 θdφ2

)
(4.12)

Note that we can perform a similar coordinate transformation as before

dr√
1 + r2

= dχ → sinh−1(r) = χ (4.13)

to write the metric as
ds2 = dχ2 + sinh2 χ

(
dθ2 + sin2 θdφ2

)
(4.14)

Note that unlike the 3-sphere above, as we increase χ, the 2-spheres keep on getting bigger. Thus this
universe does not close in on itself, it is open.

Figure 4.2: An H3 is a series of S2’s that get bigger exponentially at large proper distance.
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There is an important thing to note here: all three of these spatial manifolds are isotropic about every point
and homogenous, by construction. They are all equally symmetric, in that they all have just as many Killing
vectors as R3, that is six. It turns out this is the maximum possible number of Killing vectors that a 3d
space can have: we can say that these spatial manifolds are maximally symmetric in three dimensions. We
note that a maximally symmetric space in d dimensions has Nd Killing vectors, where

Nd =
d(d+ 1)

2
(4.15)

(Recall that you showed in a problem that Minkowski space in four dimensions had 10 Killing vectors). These
are all possibilities for the spatial sections of our universe.

Putting together all the pieces, we see that the metric now looks like:

ds2 = −dt2 + a(t)2

(
dr2

1− κr2
+ r2

(
dθ2 + sin2 θdφ2

))
(4.16)

This is called the Friedmann-Robertson-Walker metric. Clearly if a(t) increases with time, then we will have
an expanding universe. Eventually we will use Einstein’s equations to determine how a(t) actually does
depend on time, but first we will study how observers move in this spacetime.

4.1.1 Observers and redshifts

Let us now discuss the physics of freely falling observers in this spacetime. First, consider an observer at rest
at a particular point, i.e. they have

dt

ds
= 1

dxi

ds
= 0 (4.17)

From direct calculation, we can see that Γitt = 0: this means that d2xi

ds2 = 0, and thus xi(s) = xi0 is a solution
to the geodesic equation. These are called comoving observers.

Figure 4.3: Observers used in finding cosmological redshift

39



Now consider an observer at r = r1 and a different observer (us) at r = 0. Suppose the observer at r1 sends
out a light ray at t1, and that it reaches us at t2. From the null ray condition we have

ṫ2 − a(t)2ṙ2 = 0
dr

dt
= − 1

a(t)
r1 − 0 =

∫ t2

t1

dt
1

a(t)
(4.18)

Now suppose he sends out another ray after a time that he measures to be ∆t1 after the first, and it reaches
us at a time ∆t2 after the first. Then we find

r1 =

∫ t2+∆t2

t1+∆t1

dt

a(t)
(4.19)

Using the fundamental theorem of calculus, we see that

∆t2
a(t2)

− ∆t1
a(t1)

= 0 → ∆t2
∆t1

=
a(t2)

a(t1)
(4.20)

Thus, if a(t2) > a(t1), then we observe a larger ∆t then that from the emitter; this is another example of a
redshift. This is called cosmological redshift. Astronomers define the cosmological redshift as

z =
∆t2
∆t1
− 1 =

a(t2)− a(t1)

a(t1)
> 0. (4.21)

A larger z means that the source is more redshifted, and also that the universe was a little smaller when the
light ray was emitted. One way to think about this is that the universe is expanding, so all other sources are
moving away from us – but their movement creates a Doppler shift, which is this redshift.

All of this was general, but now let’s consider a source that wasn’t too far away, so that the signal was
emitted fairly recently, i.e. t1 is close to t2. The instantaneous distance between us and the source is then

d ≈ a(t1)r1 ≈ (t2 − t1) (4.22)

where the last equality follows from the nullness condition (4.19). We may now expand the red-shift formula:

z ≈ ȧ(t1)(t2 − t1)

a(t1)
≈ ȧ

a

∣∣∣∣
t2

d+O((t1 − t2)2) (4.23)

The ratio ȧ
a measures how fast the universe is expanding, and is called Hubble’s constant H0:

H0 ≡
ȧ(t1)

a(t1)
(4.24)

Thus we may rewrite the red-shift formula as

z ≈ H0d (4.25)

The redshift is measurable; it can be understood as measuring how quickly the emitter is moving away from
you, and what this means is that if you look out at at the galaxies, you can plot the redshift against how far
away they are, and it should form a straight line.

Next, let’s make a plot of a(t). It will be increasing, as in Figure 4.4; we see that H0 measures very roughly
how long ago the universe had scale factor 0, i.e the age of the universe! Current measurements give

H−1
0 ≈ 14.4× 109years (4.26)

This is an overestimate; the actual age is 13.7 billion years.
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Figure 4.4: Estimating the age of the universe using the Hubble parameter H0 now.

4.2 Dynamics: the Friedmann equations

We now seek to understand how a(t) evolves in time. To do this, we study the Einstein equations

Rµν −
1

2
gµνR = 8πGTµν (4.27)

where Tµν is the stress energy tensor for all of the matter that makes up the universe. It is also constrained
by isotropy and homogeneity to take the perfect fluid form:

Tµν = (ρ+ p)UµUν + pgµν Uµ = δµt (4.28)

Note that it is particularly nice to write it with “one up, one down” indices, in which case we have

Tµν =


−ρ

p
p

p

 (4.29)

Here ρ and p are the energy and pressure of the fluid that we are talking about. It turns out for any fluid
they are related by some function p = p(ρ); this function is called the equation of state, and it depends on
which fluid you are talking about in particular. In all the cases that we are interested in, the equation of
state always takes the form

p = wρ (4.30)

where w is a constant (in fact, a dimensionless number). Now we discuss some of the simple cases:

1. Matter: this is ordinary stuff, e.g. galaxies, stars, etc. – it is often called “dust”. It has zero pressure:

p = 0 wmatter = 0 (4.31)

Later on we will discuss the composition of the matter of our actual universe; it turns out we only
understand a very small part of what makes up our universe.
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2. Radiation: this is electromagnetic radiation. We have previously looked at the stress tensor for the
electromagnetic field. It turns out (look back at your notes!) that the trace of the stress tensor Tµµ = 0;
we see from the above parametrization that this means that

3p = ρ wradiation =
1

3
(4.32)

This was very important in the early universe.

3. Vaccuum energy: the final case is called “vaccuum energy”: for this case we have

p = −ρ wvacuum = −1 (4.33)

In this case the stress tensor is proportional to the metric itself. This is the case if have a cosmological
constant, which you will recall from (2.64) affected the Einstein equations like

T (Λ)
µν = − 1

8πG
Λgµν (4.34)

Sometimes this contribution is taken out and written separately from the other terms for pressure and
energy. In our universe this contribution is eventually very important.

Now that we understand the different possible sorts of matter, we study the Einstein equations

Rµν −
1

2
gµνR = 8πGTµν (4.35)

Now we need to perform some algebra. We plug in the FRW metric (4.16) into the Einstein equations and
work out the different components of Rµν . Again, I do not work out the details. After some algebra we find
that the tt component of the above equation is:

3

((
ȧ

a

)2

+
κ

a2

)
= 8πGρ, (4.36)

We divide it by 3 to get the equation in the form that it is usually written, called the Friedmann equation:(
ȧ

a

)2

+
κ

a2
=

8πG

3
ρ (4.37)

All of the ij equations are proportional to each other because of isotropy. The θθ equation is:

− r2
(
κ+ ȧ2 + 2aä

)
= 8πGa2pr2 (4.38)

Now we can eliminate κ from these to find the second equation, called the Rayachaudhuri equation:

ä

a
= −4πG

3
(ρ+ 3p) (4.39)

These are the two fundamental equations that govern cosmological dynamics. They contain all the informa-
tion needed to solve for the evolution of the universe. There is however a useful manipulation that we can
perform: consider taking a time derivative of the Friedmann equation and solving for ä to find

ä

a
=

κ

a2
+

(
ȧ

a

)2

+
4πG

3

aρ̇

ȧ
(4.40)

Combining this with the Friedmann equation to eliminate ä, we find eventually the following simple equation:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (4.41)

As it turns out, this equation is actually equivalent to ∇µTµν = 0, i.e. the conservation of the stress tensor,
which is something that you will verify in a problem set. This is thus sometimes called the conservation
equation.
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4.3 Cosmological solutions

Now we will seek to understand the solutions to the equations of motion. Note that these three equations
are not all independent, so we really need only two of them to get a closed system. Usually we use (4.41)
to figure out the evolution of the matter with time; then we can plug that back into (4.37) to get a closed
equation.

4.3.1 Dilution of matter and radiation

To understand this, let’s first look at (4.41) for the different cases. Note that as p = wρ, we have

ρ̇+ 3
ȧ

a
(1 + w)ρ = 0→ d

dt
(ρa3(1+w)) = 0 (4.42)

which means that for all cases we have
ρ ∼ ρ0

a3(1+w)
(4.43)

So now let’s understand what this means in all cases:

1. Matter. Here w = 0; thus we have

ρmatter(a) =
ρ0

a3
(4.44)

Thus the energy density in the matter decreases like the cube of the scale factor. This can be understood
as saying that there is a bunch of matter in the box, but the number of particles stays the same even
though the box is getting bigger. The energy per particle stays the same, so the density gets smaller.

Figure 4.5: Dilution of matter as universe expands

2. Radiation: Here w = 1
3 , thus we have

ρradiation(a) =
ρ0

a4
(4.45)

This is similar. The difference now is that the energy of a single photon goes like ~λ−1, where λ is the
wavelength of the photon; so in addition to the suppression for matter, there is extra suppression from
the fact that the box is stretching. This results in the extra suppression by a factor of a.

3. Vacuum energy: Here w = −1, so we have

ρvacuum ∼ const (4.46)
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Figure 4.6: Dilution of radiation as universe expands: note extra dilution due to stretching of typical wave-
length as box gets bigger.

This is weird. Vacuum energy (i.e. a cosmological constant) does not decrease with time, it stays the
same as the universe expands. In some sense it is a property of the space itself, not of anything else
living on the space. This is so peculiar that it is conventional to separate out its contribution and write
the Friedmann equation as (

ȧ

a

)2

+
κ

a2
=

8πG

3
ρ(a) +

Λ

3
(4.47)

where it is understood in this equation that ρ represents all matter-energy that is not from Λ (and thus
depends on a in some manner), but that Λ is a constant.

4.3.2 Actual solutions

Now it is straightforward to solve this system of equations. In practice, since the different kinds of stress
energy fall off at different rates, at any one time only one kind is important. So we will treat them separately.

Matter or radiation domination

Let’s start by setting Λ = 0, and looking at either only matter or radiation. We will treat them together;
plugging the known dependence of ρ on a into the Friedmann equation, we find

ρ ∼ ρ0

a3
→ ȧ2 − 8πG

3

ρ0

a
= −κ (4.48)

ρ ∼ ρ0

a4
→ ȧ2 − 8πG

3

ρ0

a2
= −κ (4.49)

where the left case is for matter domination, and the right-hand side is for radiation domination. We can
use our usual trick; this looks like an equation for energy conservation of a particle with coordinate a(t),
potential V (a) = − 8πG

3
ρ0
a1,2 , and energy κ = ±1, 0.

Note that if κ = 0 or −1 the universe expands forever, whereas if κ = +1 then the universe expands up to a
maximum size and then falls back again (Big Crunch). It is entirely possible to work out the time dependence
of all of these. I’ll only do it for the κ = 0 case. For matter domination we have:

ȧ2 =
α

a
→ amatter(t) = c1(t− t0)

2
3 (4.50)

and for radiation domination we have

ȧ2 =
β

a2
→ aradiation(t) = c2

√
t− t0 (4.51)
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Figure 4.7: Effective potential V (a) for cosmological dynamics.

c1,2 are constants that can be related to α, β, but doing so is not very illuminating, so I won’t. Note that
the universe expands, and we can figure out how fast it does so.

Vacuum Domination

Let’s now look at vacuum domination, i.e. we assume the full stress tensor is given by the cosmological
constant:

ȧ2 + κ =
Λ

3
a2 (4.52)

Let’s assume Λ > 0. Then we find the following three solutions for each value of κ:

κ = 0 : a(t) = a0e
± t` (4.53)

κ = 1 : a(t) = ` cosh

(
t

`

)
(4.54)

κ = −1 : a(t) = ` sinh

(
t

`

)
(4.55)

where in all cases ` =
√

3
Λ .

These solutions are important for a few different reasons. Note that they grow exponentially in time rather
than polynomially; somehow these universes expand faster.

Next, though this is far from clear, they actually all represent the same space time written in different
coordinates: this spacetime is called de-Sitter space, and it is maximally symmetric in 4 dimensions (not 3!).
Thus it has 10 Killing vectors, and is of intrinsic interest as a symmetric solution to general relativity.

Secondly: if you have any spacetime with some matter and radiation but even a little bit of cosmological
constant, then the matter and radiation will eventually dilute down to zero, but the cosmological constant
will survive, and eventually our universe will be described by de Sitter space.

As an aside, I mention that there is such a thing called Anti de Sitter space; it is what you get if you have
Λ < 0. It is the favorite spacetime of many string theorists, including myself.
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4.4 Our own universe

Now we have some understanding about how different sorts of matter cause a hypothetical universe to evolve.
Let us turn to our own universe. To do this, we first introduce some terminology. If we allow matter, radiation,
and cosmological constant to all be present, then we find that the Friedmann equation is

ȧ2

a2
+

κ

a2
=

8πG

3
(ρmatter + ρrad) +

Λ

3
(4.56)

where I have explicitly separated all of the components, and where we know that ρmatter ∼ a−3, ρrad ∼ a−4,
and Λ does not change in time. Recall now also that we have the Hubble “constant”

H ≡ ȧ

a
(4.57)

It is now convenient to divide the whole thing by H2. We get

1 +
κ

H2a2
=

8πG

3H2
(ρmatter + ρrad) +

Λ

3H2
(4.58)

Now we introduce some terminology: we see that there are a bunch of things that add up to 1; thus all of
these things must be dimensionless. We define

Ωc ≡
κ

H2a2
(4.59)

ΩM ≡
8πG

3H2
ρmatter (4.60)

ΩR ≡
8πG

3H2
ρrad (4.61)

ΩΛ ≡
Λ

3H2
(4.62)

and thus we can rewrite the equation as

1 + Ωc = ΩM + ΩR + ΩΛ (4.63)

Note that Ωc has to do with spatial curvature, whereas ΩM,R,Λ are proportional to the contribution of matter,
radiation and vacuum energy to the energy budget of the universe respectively. It is conventional to define
one more thing, called Ω: the density parameter, to be the sum of everything on the right hand side:

Ω ≡ ΩM + ΩR + ΩΛ (4.64)

and so we have the cute equation

1 + Ωc = Ω (4.65)

Ω measures the total amount of energy that is present in the universe: note that if Ω > 1, then we know that
Ωc > 0, and thus we have κ = 1; similarly for a flat universe we require Ω = 1 (as Ωc = 0) and for an open
universe we have Ω < 1. Thus Ω tells us that if we have too much energy density in the universe, then the
universe collapses into a ball and becomes compact. For that reason one sometimes writes Ω as

Ω =
ρtot
ρcrit

ρcrit =
3H2

8πG
(4.66)

with ρcrit called the critical density and ρtot counting all the contributions (matter, radiation, vacuum).

Ok, I think I have now introduced all the relevant terminology. Note that all of these things change with
time as the densities change. We can now discuss our own universe.
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4.4.1 The energy budget

Direct measurements of the gravitational effects of the matter content of the universe at this moment reveal
that

ΩM0 = 0.3± 0.1 (4.67)

where the 0 subscript indicates that we are talking about right now. Now let us talk about this matter: what
is it made of? If you look at matter around you, it’s made of protons, neutrons, electrons, etc. We have a
very good understanding of such ordinary matter. However if we study the contribution of such “ordinary
matter”, we find that the ordinary matter contributes only

ΩM0,ordinary = 0.04± 0.02 (4.68)

So what is the rest? We don’t know – but we know that it does not give off any ordinary light that we can
see with our eyes (or our telescopes, etc.), so it is called dark matter. It is most likely an entirely new kind
of particle that we have not yet detected.

Next up, what about the radiation contribution? As we know, the radiation falls off faster with time than
the matter, so we expect it to contribute less; we expect it to be around

ΩR0 ∼ 10−4 (4.69)

So for all intents and purposes, we may ignore it.

Next, we turn to spatial curvature. It appears that it is very close to zero, i.e .

|Ωc0| < 0.1 (4.70)

So if someone asks you the shape of the universe, you can say that (within error bars), it is flat.

So that leads us with vacuum energy, also called dark energy. Direct measurements from the redshifts of
supernovae – which is nicely consistent with the equations above, gives us

ΩΛ0 = 0.7± 0.1 (4.71)

Theoretically, we simply do not understand what this energy is. A brief digression: this is energy associated
with the vacuum; if you believe in quantum mechanics, then there is something called the zero-point energy
associated with the fact that particles and anti-particles can spontaneously appear and disappear into the
vacuum. This should contribute to the energy of the vacuum, but if you try to add up those energies, you
do get a number that is 10123 bigger than the observed one:

ρΛ0,theory ∼ 10123 × ρΛ0,experiment (4.72)

So this is a terrible disaster from a theoretical point of view, and is called the cosmological constant problem.
Some view this as perhaps the single most confusing problem in theoretical physics today.

So in a nutshell, then: 70% of the universe is vacuum energy, and we don’t understand what it is. Of the
30% left, 25% or so is dark matter, and we don’t understand what that is. 5% or so is ordinary matter – we
understand that.

Clearly, there is work to do.

4.4.2 History

Having exhaustively discussed the universe now, we now turn to its history.
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Figure 4.8: Rough timeline of the universe

The universe began about 13.7 billion years ago. Rather than discuss times, I will talk about times in terms
of redshift z. Recall that the redshift of a photon emitted at a time t1 and observed now was defined as

z(t1) =
a(tnow)− a(t1)

a(t1)
(4.73)

So z(tnow) = 0, and z gets bigger as we go deep into the past.

Now the universe is full of radiation and matter; for most intents and purposes the radiation behaves like it
is a gas with a temperature T . This temperature cools down as the universe expands as:

T (t) ∼ 1

a(t)
(4.74)

This is basically the same information as the radiation formula ρrad ∼ a−4, but to explain the precise relation
requires a little bit of statistical mechanics.

Let’s say the Big Bang happened at some time tBB when a(tBB) = 0. This is a curvature singularity of the
metric; we cannot understand much about this time. Note from (4.74) we see that the temperature T (tBB)
at that point is technically infinity; thus some people say that the Big Bang is an explosion. Note that people
also say that the universe began from a point; this is not really true, as it may have been flat (and thus goes
on forever), but it is also infinitely small. We also have z(tBB) ∼ ∞. We will start our considerations at
some time slightly later than the Big Bang; here everything is very high but still understandable.

Meanwhile the universe starts expanding. The temperature cools down, and eventually we begin to under-
stand the physics. There is a gas of particles: importantly, the temperatures are so high that electrons and
protons move around freely: they have so much kinetic energy that they do not know that they attract each
other. Photons bounce around and scatter off of these charged particles. At early times the radiation is more
important, and so the universe expands as a(t) ∼

√
t. But the radiation density falls as ρrad ∼ a−4 whereas

ρmatter ∼ a−3, so eventually the matter catches up! This turns out to happen at

zeq ≈ 3× 104 (4.75)

so still pretty far in the past. From then on the universe is matter dominated, so we have a(t) ∼ t 2
3 .
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Another critical moment happens a bit later: note that as the temperature cools, eventually protons and
electrons bond together and form hydrogen molecules. At this instant, suddenly there are no charged particles
floating around any more: this has a profound effect, as now the photons can go through them freely. At
this instant, the universe goes transparent: this is called recombination, and it happens at:

zrecombination ≈ 1200 (4.76)

After this life goes on, galaxies form, etc. etc. until very close to the present, until the dark energy starts
to become important. At the present moment the matter and dark energy are pretty comparable, as we
discussed previously.

Note that the radiation that I talked about is still present in the sky: its temperature has become very small,
but it is called the cosmic microwave background, or CMB. The temperature is

TCMB ≈ 2.7K (4.77)

and you can see it if you look out into the sky. Here is a map: we are actually looking at radiation from
recombination.

Later on in the future, the dark energy will be more and more important, as the matter redshifts away. Thus
at late times we will have

a(t→∞) ∼ e`t (4.78)

with the universe expanding exponentially in a de Sitter phase.
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4.5 A few issues

This is our current understanding of the universe. Now I want to point out a few (more) issues with it that
should encourage you to realize that the story I just told you is in fact incomplete. These mostly have to do
with initial conditions and how weird they are.

The flatness problem

Recall from (4.70) that the observed value for the curvature parameter today Ωc0 is very small. I want to
now ask whether or not this makes sense. To understand this, let us derive an equation for how the curvature
parameter varies with time, i.e. I seek a formula for Ω̇c, in terms of the other dimensionless objects Ωi. This
will also give us some practice in manipulating the equations of motion.

We begin by writing down everything. First the Friedmann and Rayachaudhuri equations:(
ȧ

a

)2

+
κ

a2
=

8πG

3
ρtot

ä

a
= −4πG

3
(ρtot + 3ptot) (4.79)

where ρtot and ptot is a sum of the contributions from matter, radiation, and vacuum energy. Each component
satisfies the independent equation of state

pi = wiρi (4.80)

where i runs over matter, radiation and vacuum:

wM = 0 wR =
1

3
wΛ = −1 (4.81)

Finally we recall the definitions of the density parameters:

Ωc =
κ

H2a2
ΩM =

8πG

3H2
ρM ΩR =

8πG

3H2
ρR ΩΛ =

8πG

3H2
ρΛ (4.82)

Now we begin. To derive an equation for the time derivative of Ωc, we just directly compute:

Ω̇c = − 2κ

H3a2
Ḣ − 2κ

H2a3
ȧ = −2Ωc

(
Ḣ

H
+
ȧ

a

)
(4.83)

Now we want an expression for Ḣ. From the definition H = ȧ/a we find that

Ḣ

H2
=

1

H2

(
ä

a
−
(
ȧ

a

)2
)

(4.84)

Now using the Rayachaudhuri equation we eliminate äa to find

Ḣ

H2
=

1

H2

(
−4πG

3
(ρtot + 3ptot)−H2

)
(4.85)

Using the equation of state we replace each pressure with its corresponding energy density: we thus find

Ḣ

H2
=

1

H2

(
−4πG

3

∑
i

ρi(1 + 3wi)−H2

)
(4.86)

where the sum in i runs over radiation, matter, and vacuum as in (4.80). We now use the definitions of the
density parameters to find

Ḣ

H2
= −1

2

∑
i

(1 + 3wi) Ωi − 1 (4.87)
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Now inserting this back into (4.83) we find

Ω̇c = −2ΩcH

(
−1

2

∑
i

(1 + 3wi) Ωi

)
(4.88)

Finally putting in the numerical values for the wi from (4.81) we get

Ω̇c = ΩcH (ΩM + 2ΩR − 2ΩΛ) (4.89)

This is rather a nice expression, as it removes all of the ugly dimensionful constants that are present in the
equations for cosmological evolution: instead it simply directly tells us how all of the dimensionless density
parameters evolve with time.

Now let us apply this to the very early universe, i.e. right after the big bang. From our earlier discussion,
we see that ΩΛ ≈ 0 then, i.e. vacuum energy was essentially negligible. Thus we have

Ω̇c = ΩcH (ΩM + 2ΩR) (4.90)

Now, what sort of equation is this for Ωc? Note that if Ωc = 0, then it stays zero for all time; thus the
situation with zero curvature is a solution.

But what if we have a small nonzero Ωc? Since both ΩM and ΩR are positive, a small nonzero positive Ωc
will get bigger and bigger with time, and a small nonzero negative Ωc will get more and more negative with
time. Thus we see that Ωc = 0 is an unstable point.

So: does it then make sense for Ωc to be very small today? Not really! It suggests that Ωc was somehow
fine-tuned to be extremely extremely small (or zero) at the Big Bang. Which is, perhaps, odd. (Or is it?
Discuss.)

The Horizon Problem

Now I want to finally conclude by discussing what you see if you look out into space. Consider the following
(flat) FRW metric:

ds2 = −dt2 + a(t)2
(
dr2 + r2dΩ2

)
(4.91)

Now let us perform the following redefinition to a new coordinate η:

dt = a(t)dη (4.92)

in terms of which we have
ds2 = a2(t)

(
−dη2 + dr2 + r2dΩ2

)
(4.93)

The metric is equal to a scalar function multiplying a flat metric! This scalar function (in this case a(t)2)
is sometimes called a conformal factor, and since η puts the metric into this “conformal” form, it is called
conformal time. The point of conformal form is of course that light rays are simple to understand in conformal
form: radial null light days simply satisfy

η = ±r (4.94)

However there is something interesting about conformal time. Let us recall that in our universe at very early
times we had radiation domination. Let’s pick time coordinates so that the big bang happened at t = 0, so

a(t) = a0

√
t

dη

dt
=

1

a(t)
=

1

a0t
1
2

(4.95)

Now this means that we have

η(t) =
2

a0

√
t (4.96)
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Figure 4.9: Light cone of what we can perceive in conformal time

The important point here is that, at t = 0, i.e. at the beginning of the universe, the value of conformal time
is finite. So imagine that we draw a picture of the universe, using conformal time and r. It looks like:

Now imagine that we sit now and look out into the sky. As we look back, we also look back in time; eventually
we look all the way back into the past. Notice that anything outside the light cone, we cannot see; there is a
finite volume that is accessible to us, and this is called the Hubble volume. This is a bit like the event horizon
of a black hole.

Now I will pause to indicate a paradox. Imagine that I look at two points at two opposite ends of the sky;
on the picture these two points map to diametrically opposite points. Now, these two points have never been
in causal contact. Yet if we measure the temperature from those two points, the temperatures are almost the
same. This is peculiar: how did they know that they had to be at the same temperature? Again, this is the
same ideas as the curvature problem – it suggests that when the universe was started, God took great care
to start all different parts of it at precisely the same temperature: the Big Bang is very finely tuned.

This oddity about the initial conditions of the universe is called the horizon problem. (I have simplified it
slightly for ease of presentation).

Both of these issues can be solved through the theory of inflation; we don’t have time to discuss it, but
basically the idea is that the universe was de Sitter at very early times as well. This is a fascinating subject
that you are now all entirely equipped to study, and I refer you to Sean Carroll’s textbook Chapter 8.8 to
learn more about it.
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5 Gravitational waves

We turn now to the final chapter of this course: gravitational waves. Until recently, this was a purely
theoretical subject, but no more.

5.1 Gauge transformations

Before plunging into a study of gravitational waves, we first need to understand exactly what parts of the
metric are physical and what are not. To do this, let us first start with an example. Consider flat 2d space:

ds2 = dx2 + dy2 (5.1)

Now consider performing a coordinate change to x = x′ + εf(y), where ε is small. We find then the new
metric (to lowest order in ε):

ds2 = (dx′ + εf ′(y)dy)
2

+ dy2 = dx′2 + 2εf ′(y)dx′dy + dy2 (5.2)

Finally, let us rename x′ back to x, which we are always able to do, as it is just a label. We are left with:

ds2 = dx2 + 2εf ′(y)dxdy + dy2 (5.3)

Now, is this a different geometry than (5.1)? No, it is clearly still flat space, this time expressed in funny
coordinates.

However, it is of course a different metric: the new metric has this off-diagonal term in it, gxy 6= 0. Thus
we conclude that two different metrics map to the same spacetime: for historical reasons, this idea is called
“gauge invariance”. (A similar concept also appears in electrodynamics, where it is a bit more abstract.)

This redundancy is precisely the freedom to choose coordinates (indeed, you will remember that we have
exploited this freedom many times in the course so far). We should imagine that there is an abstract manifold
M, and there are two different ways to pick coordinates on it, as in Figure 5.1.

Let us now be a bit more precise about this. Consider an infinitesimal change of coordinates: this can be
thought of as defining a vector field ζµ on space. Roughly speaking, this can be understood as the operation:

x′µ = xµ + ζµ (5.4)

The above equation is, however, somewhat imprecise, as technically speaking you should not add a vector to
a coordinate; however hopefully it should be clear what physical idea this is meant to represent.

Nevertheless the physical question remains: how, then, do physical quantities such as the metric (or anything)
change under such an infinitesimal coordinate transformation?

We are tempted to imagine something like the following: if we had a scalar field, then we could imagine
“evaluating the field at the new point”, i.e. put this in quotes

φ(x′) = φ(x+ ζ) = φ(x) + ζµ∂µφ (5.5)

This is heuristic, but it suggests that the transformation that we are interested second term should involve
derivatives of the field.

Having motivated it, we now develop the correct mathematical machinery for this, which involves Lie deriva-
tives. These were introduced in the first term (see chapter 11 of the first term lecture notes), but we recall
what the definition is. For any geometric object, we can define its Lie derivative along a vector field ζ.
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Figure 5.1: Idea of different coordinate systems on a manifold M

There are expressions for the Lie derivatives of objects with any number of up or down indices. For a scalar
field this is simply the normal derivative:

Lζφ = ζµ∇µφ (5.6)

We will particularly care about the case when we have two lower indices: for the Lie derivative of a tensor
Aµν along a vector field ζ we have:

LζAµν = ζσ∇σAµν + (∇µζσ)Aσν + (∇νζσ)Aµσ (5.7)

Roughly speaking, this tells us how all of these objects change if we “drag” them along a vector field. Note
that when we apply this to the metric we have:

Lζgµν = ∇µζν +∇νζµ (5.8)

as the covariant derivatives of the metric are zero.

Now let me make a definition. For every vector field ζµ, we define a gauge transformation of the metric as
the infinitesimal transformation:

gµν → gµν + δζgµν δζgµν = Lζgµν = ∇µζν +∇νζµ (5.9)

Such a transformation is also called a diffeomorphism; it can be morally understood as an infinitesimal
change of coordinates, as in (5.4). Note that the example (5.3) that we started with takes this form, with
ζµ = 2ε(f(y), 0).

The important thing is: two metrics that are related by a gauge transformation are physically equivalent;
they represent the same geometry, though they are written in different coordinates.

One would now hope that the physics is invariant under gauge transformations. This means that if two
metrics are related by a gauge transformation:

g′µν = gµν + δζgµν (5.10)
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then we get the same physical answers for all questions we can ask. For example, if gµν satisfies Einstein’s
equations in vacuum, then so will gµν :

Rµν [g] = 0 ↔ Rµν [g′] = 0 (5.11)

where Rµν [g] refers to the Ricci tensor evaluated on the metric g, etc. This can be checked explicitly in full
generality, though we will only do the linearized version of it below. It is instructive to check (exercise!) that
the integrated Einstein-Hilbert action is also invariant under gauge transformations.

How many independent gauge transformations are there? We see that as there are four independent coordi-
nates, there are four different functions of space that parametrize gauge transformations in general relativity.

All of this is important conceptually. It is also very useful at a practical level, because it means that we can
typically use these gauge transformations to put our metric into a form that simplifies computations.

5.2 Gravitational waves and their polarizations

Armed with this, we may now move on to demonstrate that general relativity supports wave-like solutions
that propagate through space.

5.2.1 Linearized Einstein equations

We will consider small ripples around flat space, i.e. we write

gµν = ηµν + hµν hµν � 1 (5.12)

where as usual hµν is a small perturbation and we work only to first order in it. Let’s get a feeling for how
this works by computing the inverse metric in powers of h. It is fastest to just write down the answer:

gµν = ηµν − ηµσηνρhσρ +O(h2) (5.13)

and you can check this indeed satisfies gµνgρσ = δµσ +O(h2), so is correct to this order.

Note that this means that if we raise and lower indices on h itself we can do it with the flat space metric:

gµνhνσ = ηµνhνσ +O(h2) (5.14)

In the remainder of this section, every computation will involve a power of h; thus we will raise and lower
with just ηµν .

Finally, note that from the formula for the gauge transformation of gµν (5.9), the gauge transformation of
hµν is given by

δζhµν = ∂µζν + ∂νζµ (5.15)

with ζ an arbitrary 4-vector, where to the lowest order in h we can replace covariant derivatives with partials.

Next, we want to work out the full Einstein equations as a function of this small perturbation h. (Recall at
the beginning of term, we did it in the static limit.) To do this, first consider the general expression for the
Christoffel symbols

Γσµν =
1

2
gσλ (∂µgνλ + ∂νgλµ − ∂λgµν) . (5.16)

Now, seeing as ηµν does not depend on space, to lowest order we can rewrite this as

Γσµν =
1

2
ησλ (∂µhνλ + ∂νhλµ − ∂λhµν) (5.17)
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Now the Riemann tensor in general is

Rλρµν = ∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ . (5.18)

As Γ ∼ h, we may neglect the terms that are Γ2; we are then left with

Rλρµν =
1

2

(
∂µ∂ρh

λ
ν − ∂ν∂ρhλµ − ∂µ∂λhνρ + ∂ν∂

λhµρ
)

(5.19)

I would now like to point out that this expression is actually gauge-invariant, i.e. if we do the transformation
hµν → hµν + ∂µζν + ∂νζµ, then Rλρµν does not change.

Let us take a second to verify this: the change in the Riemann tensor is

δζR
λ
ρµν =

1

2

(
∂µ∂ρ

(
∂λζν + ∂νζ

λ
)
− ∂ν∂ρ

(
∂λζµ + ∂µζ

λ
)
− ∂µ∂λ

(
∂νζρ + ∂ρζν

)
+ ∂ν∂

λ (∂µζρ + ∂ρζµ)
)

(5.20)
Now as it turns out, all of these terms cancel pairwise. The easiest way to see this is to pick one of them –
say the ζν with the free ν index, and look at the two terms where it appears; by using the commutativity
of partials, we see that they are the same but with the opposite sign. Thus they cancel, and so on for every
term. We conclude that

δζR
λ
ρµν = 0 (5.21)

i.e. the Riemann curvature tensor is gauge-invariant. Physically, what this means is that the notion of
curvature does not care about what what coordinate system you use to describe it. At a practical level, this
establishes what I said earlier; if h is a solution to Einstein’s equation (which depends only on Rλρµν), then
so is its gauge-transformation.

Moving on, we contract on λ and µ in the expression for (5.19) to get the linearized Ricci tensor:

Rλρλν = Rρν =
1

2

(
∂µ∂ρh

µ
ν − ∂ν∂ρhλλ − ∂µ∂µhνρ + ∂ν∂

µhµρ
)

(5.22)

If we set this to zero, then we obtain the equation that we need to solve for h. It is a linear equation.

5.2.2 Solving linearized wave equation

Now, I want to note that we can actually simplify this a lot by using the gauge transformations that we have
discussed at such length. In particular, I would like to use this freedom:

h′µν = hµν + δζhµν (5.23)

to pick an h′ so that h′ satisfies the following harmonic gauge condition.

∂µh
′µ
ν −

1

2
∂ν
(
h′λλ
)

= 0 (5.24)

The reason for this is that it simplifies greatly the equations of motion. It turns out we can always find a ζ
that does the job: plugging in (5.23) we see that

∂µh
′µ
ν −

1

2
∂ν
(
h′λλ
)

= ∂µh
µ
ν −

1

2
∂ν
(
hλλ
)
− ∂µ∂µζν (5.25)

So if we just pick ζν to satisfy:

∂µ∂
µζν = ∂µh

µ
ν −

1

2
∂ν
(
hλλ
)

(5.26)

56



then h′ will indeed satisfy the harmonic gauge condition. View this as a PDE for ζν ; it will always have a
solution. Note that ζµ does not have a unique solution: we can add to it any ζµ that satisfies ∂µ∂

µζν = 0.
This is called a residual gauge transformation.

However, we can now drop the prime, and simply assume that we started all along with an h that satisfied:

∂µh
µ
ν −

1

2
∂ν
(
hλλ
)

= 0 (5.27)

The point of this is to kill many terms from (5.22):

Rρν = −1

2
∂µ∂

µhνρ (5.28)

Setting this to 0 for a gravitational wave propagating through the vacuum, we find at the end of the day:

∂µ∂
µhνρ = 0 (5.29)

This is the relativistic wave equation: this is the whole point of the analysis, from here we may now see that
indeed general relativity admits gravitational wave solutions. Let us take a moment to understand what the
operator ∂µ∂

µ does: expanding it out, we see that it looks like(
∂2
t − δij∂i∂j

)
hµν = 0 (5.30)

You will recall from your earlier classes that solutions to this equation are travelling waves. Note that e.g. if
we assume that the wave depends only on t and z then we see that

hxy = φ(t± z) (5.31)

is a solution, for an arbitrary function φ: this represents a wave that is traveling in the z direction, at speed
1 (i.e. the speed of light).

Let’s be more systematic about this. We normally instead solve this equation in Fourier space by writing out
a solution as follows

hµν = Re
(
ενρe

−ikµxµ
)

kµ = (ω, ki) (5.32)

with kµ a four-vector that is called the momentum of the wave ki tells you the direction that the wave is
moving, and ω tells you its frequency. εµν is a constant tensor that tells us “the directions the wave points
in”: its called the polarization tensor. We see from plugging this ansatz into (5.29) that we have

kµk
µενρe

−ikµxµ = 0 → kµk
µ = 0 . (5.33)

In other words, the momentum is a null vector. This implies that the wave travels at the speed of light.

Let us turn now to the polarization tensor εµν . It is conventional to make the following further choices on
εµν : we use the residual gauge transformation to set the following condition on εµν :

ε0i = 0 εµνη
µν = 0 (5.34)

This is always possible5.

Note that now the harmonic gauge condition (5.24) becomes simply.

kµεµν = 0 (5.35)

5We do not discuss this in lecture, but note that any ζ = bµe−ik·x with k2 = 0 satisfies the residual gauge condition, and
now b and k can be fixed to satisfy these conditions
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This collection of conditions is called tranvserse traceless gauge.

Let’s write down concretely what these conditions mean; consider a wave that is propagating only in the z
direction. Then if we sort through all the conditions we have for εµν , we eventually find that it is:

εµν =


0 0 0 0
0 ε+ ε× 0
0 ε× −ε+ 0
0 0 0 0

 (5.36)

Here ε+ and ε× are two undetermined parameters: they represent the two polarizations of a gravitational
wave that is moving in the z direction. More physically, they represent the ways that spacetime wiggles if
you hit it.

Note: there are two of them precisely because we said that there are 2 degrees of freedom in the gravitational
field. This is the same information.

Now what does this wave do? It distorts spacetime by changing physical distances. Let us think about this
for a second: consider a single particle that is initially at rest at a point, so

Uµ = (1, 0, 0, 0) (5.37)

Now suppose a gravitational wave comes along. We know that the particle will follow the geodesic equation,
which tells us that

d2

ds2
Uµ + ΓµρσU

ρUσ = 0 (5.38)

Now since the particle is initially at rest, the instantaneous value of its acceleration at t = 0 is

d2

ds2
Uµ
∣∣
t=0

= −Γµtt (5.39)

But if we now turn back to (5.17) we see that

Γµtt =
1

2
ηµν (2∂thtν − ∂νhtt) = 0 (5.40)

In other words, the acceleration is zero! So it seems like the particle does not move as the gravitational wave
passes by? Is this correct?

No. What we have actually shown is that the coordinate values of the particle do not change; but this is
not a physically meaningful statement (coordinates are labels, etc. etc.). A physically meaningful statement
would be something like, “what is the proper distance between two particles”, etc. etc. So let us calculate
that: consider two particles separated in coordinates by

ξµ = (0, ξx, ξy, 0) (5.41)

As we have seen, if the particles are at rest, their coordinates do not more, and so this defines the separation
for all time. But now we can calculate the proper distance between these two particles to find:

∆ = gµνξ
µξν = (ηµν + hµν) ξµξν = −δijξiξj +

(
2ε×ξ

xξy + ε+
(
(ξx)2 − (ξy)2

))
cos(k · x) (5.42)

The proper distance changes! Thus the particles clearly wiggle. If you think about what this is doing, consider
arranging a bunch of particles in a circle; as a gravitational wave passes by, depending on the polarization of
the wave the circle will distort in the manner shown in Figure.
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Figure 5.2: Effect of two possible gravitational wave polarizations on test particles arranged in a circle in the
xy plane.

5.3 Production of gravitational waves

Here I will be very sketchy, as this is an intricate subject. The basic idea is that up till now we have linearized
Einstein’s equations in vacuum, and found that the resulting perturbations obey the wave equation. What
one does next is instead linearize them in the presence of matter, i.e. a non-trivial Tµν ;

Rµν −
1

2
gµνR = 8πGTµν (5.43)

Going through the linearization one finds

∂µ∂
µhνρ = −16πG

(
Tνρ −

T

2
gνρ

)
(5.44)

The point here is that non-trivial matter acts as a source for gravitational waves. So almost any kind of
non-trivial matter will do it; however to create a radiation field it has to be moving in some sense. Not only
that, it has to move in a non-spherically symmetric way: this is due to Birkhoff’s theorem, which states that

The spacetime outside of any spherically symmetric (possibly time-dependent) source is the Schwarzschild
metric.

In other words, if you take a balloon and inflate and deflate it in a spherically symmetric way, it will not
create any gravitational radiation, because the spacetime outside remains Schwarzschild always. On the other
hand, if you take two stars and spin them around each other, then this will create gravitational radiation
(though I have not shown this. See references in lecture notes.)
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Figure 5.3: Schematic picture of laser interferometer

5.4 Detection of gravitational waves

Until recently, the only detection of gravitational waves was indirect and came from the Hulse-Taylor binary
pulsar. This is a system of two neutron stars (21 thousand light years away) that orbit each other once
every seven hours. As time goes on, this system creates gravitational waves that radiate away some of its
energy: thus they come closer to each other slowly, and the orbital period decreases. We can measure the
orbital period by observing the (electromagnetic) radiation produced by the star on Earth. People have
been watching it for years and years, and the decrease of the orbital period is perfectly consistent with the
prediction for the energy carried away by gravitational waves in general relativity.

However, all of this recently changed. To understand what happened, we first have to consider how direct
detection of gravitational waves would work. This is done through an interferometer: you evacuate a 4 km
tunnel on earth from air and set up a system of laser beams and mirrors. One then interferes the beams
together and waits. If a gravitational waves passes by, it will squeeze the tunnels and alter the interference
pattern; however the signal is truly miniscule! The signal that we are looking for has a relative strength of
10−21; over a 4 km tunnel, this alters the mirror location by about 10−18 m. By comparison, a proton has a
radius of about 10−15 m: so the signal is about a thousandth the size of a single proton. It is amazing that
we can detect it.

But we can! About a billion years ago, two black holes collided and made a bigger one. They created a
spectacular amount of radiation, emitting about 5% of their total rest mass into gravitational radiation, which
spread out and hit the earth on September 14, 2015. More precisely, it first hit the detector in Lousiana; 7
ms later, it propagated through the earth and hit the detector in Washington state. The signal created set off
all kinds of alarms and is spectacularly good agreement with the predictions of general relativity Handout.
Since then, there have been a few more events and we expect many many more to come.
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This is thus the dawning of a new age of astronomy; previously we would only look out into the sky, but now
we can close our eyes and listen to what the ripples in spacetime are telling us. It remains to be seen what
we will find.

6 Advanced topics: Penrose Diagrams

Here we discuss one more topic; you will have noticed that a lot of the interesting stuff in this course involved
understanding the causal structure of spacetime; e.g. Romeo receives no messages from Juliet once she passes
the horizon, etc. etc. We will now learn how to draw pictures that let you draw a picture of an entire universe
on a (finite) piece of paper in a way that captures the causal structure; these are called Penrose diagrams.

It is best to explain this with an example. Consider ordinary Minkowski space in polar coordinates:

ds2 = dt2 − dr2 − r2dΩ2 (6.1)

We will need to be careful about the range of the coordinates: we have

t ∈ (−∞,+∞) r ∈ [0,∞) (6.2)

In this section we will discuss only radial light rays; as we have discussed extensively, these follow t = ±r.
Note that it is a bit silly to try to draw a picture of the spacetime; as the coordinates (t, r) go off to infinity.

To fit the spacetime on a finite blackboard, we need to change to coordinates that have a finite range, and we
need to do this in a way that preserves the causal structure. To this end, first consider the following change
of coordinates:

u ≡ t− r v ≡ t+ t (6.3)

These sorts of coordinates are often called a “light-cone” coordinate system, because light rays satisfy u =
const, v = const. What is the range? Note that we have

u ∈ (−∞,+∞) v ∈ (−∞,+∞) u ≤ v (6.4)

The last relation is crucial, and follows from the fact that r > 0 before. Now we can write the metric in
terms of u, v; we have r = 1

2 (v − u), and thus

ds2 = dudv − 1

4
(v − u)2dΩ2 (6.5)

Now is the magic part: we now squish the entire infinite range of u, v into a finite range of a new coordinate
U, V using the arctan function:

U ≡ arctanu V ≡ arctan v (6.6)

which of course means that
u = tanU v = tanV (6.7)

Recall the shape of the arctan function; note that as its argument goes between −∞ and +∞, the arctan
itself only goes between −π2 and π

2 . Thus we have for the ranges of the coordinates:

U ∈
(
−π

2
,+

π

2

)
V ∈

(
−π

2
,+

π

2

)
U ≤ V (6.8)

The last property is inherited from above, as the arctan function is monotonic. We can now convert the
metric to the new coordinates. We use du = 1

cos2 U dU (and similarly for v). We also note that

(v − u)2 = (tanV − tanU)
2

=
1

cos2 U cos2 V
sin2(V − U) (6.9)
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where the last equality requires some trig identities (check at home!). Putting it together, we find that the
metric takes the form:

ds2 =
1

cos2 U cos2 V

(
dUdV − 1

4
sin2(V − U)dΩ2

)
(6.10)

This is starting to look good; you will see why in a second. For purposes of intuition, we now switch back to
a timelike coordinate T and a spacelike coordinate R:

T ≡ V + U R ≡ V − U (6.11)

which results in the following ranges: the one for R is simply:

R ∈ [0, π) (6.12)

and we can write the range for T in the following way:

T +R = 2V < π − T +R = −2U < π (6.13)

which combines into the following handy relation:

|T |+R < π (6.14)

We can now write the metric as follows:

ds2 =
1

cos2 U cos2 V

(
dT 2 − dR2 − 1

4
sin2RdΩ2

)
(6.15)

The point of all of this analysis was actually to figure out the ranges on the coordinates. In particular, note
that light rays in the new coordinates (T,R) follow:

T = ±R (6.16)

and now we can draw a simple picture on the (T,R) plane: we get simply picture.

This is called the Penrose diagram of Minkowski space; it shows you the entire spacetime in one easy-to-draw
picture.
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A Christoffel symbols

Here I will document some useful Christoffel symbols.

A.1 Friedmann-Robertson-Walker metric

The metric is

ds2 = dt2 − a(t)2

(
dr2

1− κr2
+ r2dΩ2

)
(A.1)

and the Christoffel symbols are

Γtrr =
aȧ

1− κr2
(A.2)

Γtθθ = r2aȧ (A.3)

Γtφφ = r2aȧ sin2 θ (A.4)

Γrrt =
ȧ

a
(A.5)

Γrrr =
rκ

1− κr2
(A.6)

Γrθθ = r(κr2 − 1) (A.7)

Γrφφ = r(κr2 − 1) sin2 θ (A.8)

Γθθt =
ȧ

a
(A.9)

Γθθr =
1

r
(A.10)

Γθφφ = − cos θ sinθ (A.11)

Γφφt =
ȧ

a
(A.12)

Γφφr =
1

r
(A.13)

Γφφθ = cot θ (A.14)

B Propagating degrees of freedom

Here is some bonus (unexamined) material for those who want an abstract understanding of how many
degrees of freedom there are in gravity.

B.1 Propagating degrees of freedom: trivial example

First, I want to explain what a propagating degree of freedom is.

This may seem like an intuitive concept, but let us slowly build up to the full case. In the full case, we will
have dependence on space and time both; it turns out that the spatial part just goes along for the ride, so let
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us first work out an example without it. We then start with on ODE, e.g. the following for a single variable
X(t):

Ẍ(t) + ω2X(t) = 0 X = x1e
iωt + x2e

−iωt (B.1)

So, definition: a propagating degree of freedom is one that obeys a 2nd order differential equation. Thus,
here we have one propagating degree of freedom; it requires two integration constants to determine a full
solution.

Now consider the following system (X(t), Y (t)), and suppose it satisfies the equations:

Ẍ + ω2X = 0 Ÿ + ω2Y = 0 (B.2)

whose general solution is
X = x1e

iωt + x2e
−iωt Y = y1e

iωt + y2e
−iωt (B.3)

Clearly we have two propagating degrees of freedom; we need four integration constants to specify a full
solution. We may think that we specify this data at t = 0; these integration constants are then called “initial
data”. We will call equations with two time derivatives “dynamical equations”.

Now let us add a wrinkle: consider adding another equation, e.g.

Ẋ + Ẏ = 0 (B.4)

This imposes a relation between the different integration constants: we see from above that it tells us that

x1 = −y1 x2 = −y2 (B.5)

Thus this is a constraint on the initial data: it tells us that not all sorts of initial data are possible. The
constraint brings us down to having one degree of freedom again. Such constraints will appear whenever we
have an equation that has fewer time derivatives than the dynamical equation.

B.2 Propagating degrees of freedom: general relativity

Now, with this worked out, we turn to the Einstein equations in vacuum:

Gµν = Rµν −
1

2
gµνR = 0 (B.6)

Remember that R ∼ ∂Γ and Γ ∼ ∂g; thus these are second order equations in space and time. We want to
find out how many propagating degrees of freedom there are in general relativity in four dimensions. It turns
out that some of the equations are dynamical ones, and some are constraint equations: however they are too
complicated to actually write down, so we need to be more clever. Today we will give an indirect argument
that works at the full nonlinear level; tomorrow we will perturb around flat space and work out the analog
of directly finding the integration constants.

Naively, the metric has 10 components. So if there were no wrinkles, we would expect 10 dynamical degrees
of freedom. But some of the Einstein equations are constraints; to find out which they are, we need to look
inside Gµν and see which equations have fewer than 2 time derivatives; from the analysis above, these will
be the constraints.

Now recall from Michaelmas term the contracted Bianchi identity:

∇µGµν = 0 (B.7)

Remember that this works for any metric, not just for a solution to the Einstein equation6. Now let’s expand
this out using Christoffels, etc:

∇µGµν = ∂µG
µν + ΓµµσG

σν + ΓνµσG
µσ = 0 (B.8)

6Indeed, it is clearly trivial for a solution to the Einstein equations.
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Now I break this into space and time and rearrange a little bit:

∂tG
tν = −

(
∂iG

iν + ΓµµσG
σν + ΓνµσG

µσ
)

(B.9)

Now: recall that this works for any metric g. Suppose Gtν had a term in it like two time derivatives of gαβ :
Gtν ⊃ ∂2

t gαβ . Then the left hand side of this equation would have a term with three time derivatives in it.
But we know that the right hand side has at most two derivatives, of any kind. Therefore there cannot be
any term in Gtν with two time derivatives in it. Thus each of the Gtν equations is a constraint.

So we have four constraints. Now we are down to 10− 4 = 6 degrees of freedom.

Next, note that we also have four gauge transformations; thus there are 4 functions worth of freedom that
are arbitrary, and we can remove those two. So now we have

10− 4− 4 = 2 (B.10)

So there are 2 propagating degrees of freedom left in general relativity in four dimensions. This means that
there are 2 polarizations of gravitational wave that we need to look for. In the next section, we will explicitly
look for them.
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