top of page

01 research

Most of my research involves aspects of holographic duality, which states that certain theories of quantum gravity are actually secretly quantum field theories (roughly, theories describing sets of interacting particles) in one dimension lower. 

This is practically useful for computations in field theory: when the field theory is strongly coupled, the gravity theory is typically classical and easy to understand. Thus we can map a strongly-correlated quantum physics problem to a simple exercise in classical geometry.  

Holographic duality may also be conceptually profound. It suggests that we can shed light on the deep mysteries of quantum gravity by studying (in principle) more well-defined problems of quantum field theory, though the required reorganization of the degrees of freedom is not yet understood.

My papers on the arXiv are here. 

Nabil Iqbal


I'm a theoretical physicist interested in string theory, quantum field theory, and gravity. Much of my research deals with the idea that these seemingly diverse concepts are sometimes just different parts of the same elephant



Here is a gentle 20 minute introduction to string theory for non-specialists. 

Here are some interactive visualizations of things I find fun in physics.

In the Spring of 2020 I taught the second half of General Relativity. Lecture notes are here.

In the Fall of 2020 I online taught the second half of the graduate Quantum Field Theory course. The entire lecture course can be watched here and lecture notes are here.

I also (online) taught Statistical Mechanics. Lecture notes will appear at some point. 

Here are some lecture notes on entanglement entropy in field theory and gravity from the Modave Summer School in 2015. 

Here (lecture 1, lecture 2, lecture 3) are video lectures of an elementary introduction to string theory at Birzeit University, targeted at advanced physics undergraduates.


Department of Mathematical Sciences 
MCS 3003

Durham University

Durham DH1 3LE


bottom of page